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What are the key enabling materials and methods?  

Zigzag – semiconducting 

Armchair – metallic 

Open challenge: controlled chirality 

2D quantum wells, 

graphene 

1D semiconductor nanowires, 

carbon nanotubes 

0D quantum dots, 

molecules 
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electron-phonon coupling in Si nanowires 

Murphy-Armando, Fagas and Greer, Nano Lett. (2010) 

What works in bulk fails on the nanoscale 

<110> 3 nm 

[110] grown mobility is 6x times larger than for [100]  

Sensitive to details of deformation potential  

Full – NW def pot 

Iso – isotropic bulk 

Bulk – bulk def pot 

Iso eff- isotropic NW 



www.tyndall.ie 

1.15 nm 

SiNW 

thickness 

Oxide  

1 nm 

3.1 nm gate length 

SiNW Gate-all-around junctionless transistor 

Relaxed H-saturated [110] SiNW  

• Diameter = 1.15 nm 

• Dopant atoms: As or P 

Cross section 

1.15 nm 

Dimensions of gated simulated device 

Simulated GAA junctionless transistor (right): 

Oxide thickness 1 nm – continuum dielectric κ 

Gate length = 3.1 nm  
Ansari, B. Feldman, Fagas, Colinge, Greer 

 Appl. Phys. Lett.  (2010) 
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At these scales, requires a highly doped device? 

Mulliken charge difference,  ΔQM 

Charge de-localizes over  ~2 nm ! 
 

Comparable to gate length 

Half filled band  metal 

 

Mott insulator to metal transition 

Ec 

Ev 
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• N-type 

• Comparable to similar 

SiNW devices 

• Dopant profiles influence 

device operation 

 

 

Doping levels > 1% achievable 

CNT Gate-all-around junctionless transistor 
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Is there new magic at the interfaces? 
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Nanostructures are mostly surface 
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O’Callaghan, Monaghan, Elliott, and Greer 

Appl. Phys. Lett.  90, 143511 (2007)  

Strain in Si interlayers at SiOx/Ge interface 

Substitute Ge  

substrate atoms  

with Si to form  

interlayer 

 

 

High mobility  

substrate with ideal  

Si/SiOx interface 

 

From continuum and  

atomic simulation –  

strain resides in  

interlayer 
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Stress in interlayer with increasing thickness 

Mechanically dominated 

Chemically dominated 

Ge-O  Si-O 

Si fracture strength     

↑  Critical thickness 
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Increasing surface-to-volume yields new effects  

Leu, Shan, Cho, Phys, Rev. B (2006) 

Nolan, O’Callaghan, Fagas, Greer, Frauenheim, Nano Lett. (2007). 

Band gap control by surface chemical  modification 

Quantum Confinement 
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Scattering off surface oxide in quasi-1D wires 

<110> Si nanowire 

W = 1.15 nm and 1.54 nm 

<100> SiNW 

W = 1.63 nm 

Si-O-Si backbond 

Si  at oxidation  

state Si+1 

Fagas and Greer, Nano Letters  (2009) 

and Si+2 
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Hole scattering in [110] Si nanowires 

valence edge valence edge 

[110] oxidation varied with surface 

hydroxyl groups  

W = 1.15 nm 

Defect density n = 5  1019
 cm-3 

[110] oxidation varied with surface 

hydroxyl groups and O backbonds  

W = 1.15 nm 

Defect density n = 5  1019
 cm-3 

Scattering lengths calculated from method of : 

Markussen, Rurali, Jauho and Brandbyge, PRL (2007) 
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 Different materials and approaches? 

Gannon, Greer, Larsson, Thompson, Langmuir (2009) 

Gannon, Greer, Larsson, Thompson, Nano (2010) 

MD: “easy” to explore 
machine use 
 
O(106)  atoms 
 
512 compute cores  
 
approaching 0.1 μsec 
 
4096 cores on IBM  
Watson’s USA based BG 
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What does the nano world enable?  

VG 

VS 
VD 

10 to 15 years ago we didn’t know 

if Si transistors would work  

below 10 nm 

Molecular electronics is 

still a great opportunity 

to explore electron  

transport on the  

1 nm scale  
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A 
A 

C 

B 

A  patterned metal 

B  polymer substrate 

C  piezoelectric piston 

Mechanical break junctions 

Armstrong et al, PRB 2011 
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A single conducting channel has an intrinsic quantised 

resistance 

For macroscopic conductors, many parallel channels, 

intrinsic conductance is low 

In nanoscale conductors, this resistance is unavoidable 
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Agrees well some 

measurements: 

• β =0.57 / n 
[Cue et al., J. Phys. Chem B 

106, 8609 (2002)] 

 

• β= 0.52 / n  
[Haiss et al., PCCP 6, 4330 

(2004)] 

 
• β= 0.68 – 0.79 / n 
[Akkerman et al., Nature 441, 

69 (2006)] 

G. Fagas, et al, Phys. Rev. B (2006). 

Exponential decay in resistance with length  

Conductance across Au-S-(C2H4)n-S-Au molecular junction 
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 “Quantitative” agreement with well-defined 

measurements of molecular conductances 

 

Different linkers: well defined conductances 

Conductance (ns) 

NH-anchoring NH2-anchoring L. Venkataraman et al, Nano 
Letters 6, 458 (2006) 

F. Chen et al, JACS 128, 15874 
(2006) 

 

Pentane 34.52±16.51 51.99±24.10 27.12±0.77 - 

Hexane 12.96±2.98 30.64± 6.07 11.62±1.16 20.79 

Heptane 4.27±1.03 4.91± 3.26 5.66±1.55 - 

Octane 3.65 4.33± 3.26 2.32±2.32 3.85 

Fagas and Greer (2007) 

Vb 

… additionally 

 direct comparision to NEGF+DFT, complex band structures,  

 and analytical tunnel barrier models 

  

McDermott et al (2009)  
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Molecular Quantum Dot 



www.tyndall.ie 

Molecular Quantum Dot 
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Weidinger et al, 2002 

Extremely long spin coherence times  (order of ms) 

Group V Atoms Trapped in C60 
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What new skills are required? 

How to design  

 

- Classical circuits working  

 near quantum limits 

 

 - interface between quantum  

and classical worlds  
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L 
R 

V=e(L - R) 

+k -k 
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+k -k 

ε 
momentum flow into device 

X 

X 

Momentum away  

from device 

no back reflections 

Momentum away  

from device 

no back reflections 

Quantum electronic transport 
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How does a battery work? 
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Density matrices 

 |ˆ| OO

Quantum mechanical system average for O 

Quantum mechanical subsystem average for O 

]ˆ[ OTrO 

How do we define O as outputs and what are the inputs? 

Delaney and Greer, Proc Roy Soc A (2006) 
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Input and output should correlate 

Density matrices between subsystems should factorize 

Can we write quantum to “classical” circuit laws? 

Fan-out: 

The two outputs should 

not correlate 

(operations B and C independent) 
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We know how to calculate density matrices 

Canonical ensemble                   Grand canonical ensemble 

 

 

 

 

 

 

 

 

Maximize entropy: yields best estimate to subsystem density matrix 

 

MaxEnt (Jaynes 1957)             Information Theory (Shannon 1948) 

]ˆˆ[ HTrE 

]ˆexp[ˆ H 

]ˆˆ[ HTrE 

]ˆˆ[ NTrN 

]ˆˆexp[ˆ NH  
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Interacting quantum sub-systems as circuits 

V1 

V2 

Iout 

]ˆˆ)ˆˆˆ(exp[ˆ
21 SsDD FFVVH  

]]ˆˆ)ˆˆˆ(exp[ˆ[ 21 SsDDout FFVVHITrI  

Power supply 

Operation 

Inputs 

Output 
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A simple example: spin gate 
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A simple example: spin gate 
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A simple example: spin gate 

“AND” 
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Correlations in nanowires 
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Scaling 

The end is nigh 

… but what the heck does nigh mean? 


