intgl.

CD1283/'1284 Evaluation Kit

Application Note

May 2001

As of May 2001, this document replaces the Basis Communications Corp. document AN-CD6.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The CD1283/1284 — Evaluation Kit may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001
*Third-party brands and names are the property of their respective owners.

Application Note

intel.

CD1283/'1284 Evaluation Kit

Contents

1.0

2.0
3.0

4.0

5.0

6.0

7.0

8.0

Evaluation Kit CONTENTS ..o s 5
1.1 [F= U0 AT T T U P U SUT U 5
1.2 o) 1111V U= PSR TPPRT 5
1.2.1 REEIENCES ... et e e e 5
INEFOAUCTION Lo 5
Supplemental INfOrmMation ..., 6
3.1 11 (=] ¢ U] o] U P TP 6
3.2 CD1283/'1284 DMAACK SEIECE......uviieeeiiiiiiieeeciiiie ettt 6
3.3 Ordering INfOrMEatioN ..o 6
Hardware Installation ... 7
4.1 SYStEM REQUIFEMENTS .ceeii ettt s e e e e e e e e s e e e e e e e e e se e ennenneees 7
4.2 o o [N (o] o I =To =T o [R PTPRT 7
4.2.1 SWItches and JUMPETSuuuiiiiieeie it eee e e s e e e e e e e e aee s 7
Software INStAllAation ... 9
5.1 Running the Demonstration SOftWArecvivieiiiiiiiiiiiee e 9
CD1283/'1284 Parallel Channel Programming Guide..........ccccceoevvvnnanee. 10
6.1 FUNCHONAl BIOCKS ...ttt e e e 10
6.2 Using the Parallel Channel............oooi e 11
6.2.1 Channel INitialiZation ... 12
6.2.2 Data PipeliNe ... 13
6.3 Channel OPEratioNcooi it e e 14
6.3.1 Receiving Data — Compatibility Mode.............ooooiiiiiieeee, 14
6.3.2 Receiving Data and ECP MoOde............cooiiiiiiiiiiiiiiiiiiiiee e 14
6.3.3 Changing Dir€CHONScuiiiiiaaiiiiiiee it 15
6.3.4 Transmit Data — Reverse Nibble Mode............ccccuiiiiiiiiiiiiiniiieeee, 16
6.3.5 Transmit Data — Reverse Byte MOde..........coooiiiiiiiiiiiiiiiieaeieeiieeeee 16
6.3.6 Transmit Data — ECP MOGE........cccuiiiiiiiieaiei e 16
6.4 [Y o T SRR 17
Programming EXamMpPles ... 18
7.1 INILAlIZALION COUEeiiiieiiiiiie e e e e naeeeas 18
7.2 SEIVICE REQUESES ...ceiii ittt e e e e e e e e e e e e e e e e e s e st anaeaneaaeaes 19
7.2.1 PArallel POt ..o 19
T7.2.2 PIPEINE. ..ot 21
7.2.3 Miscellaneous Pipeline ROULINES..........cuuviieiiiiiiiiiieiiieece e 22
7.3 [10101 = T PP 25
PAL Equations and SchematiC...........c.ccccoeiiiiiiiiiiceeicccee e 27

Application Note 3

u
CD1283/1284 Evaluation Kit I ntGI ®

Figures
1 PolliNg MENOM ... e e e e 25
2 Interrupt-Driven Method ... 26
Tables
1 Y] (o ST (1] o S PPERSRR 7
2 U] 0] 01T = PP UPPPPOT PPN 8
3 Eligible Switch and Jumper SEttiNgScovveeiiiiiiir e 8

4 Application Note

[|
I ntel . CD1283/'1284 Evaluation Kit

1.0 Evaluation Kit Contents

1.1 Hardware

* CD1284 Evaluation Board
¢ |EEE Std. 1284 type C to |IEEE Std. type A cable

1.2 Software

* Foppy disk contents:
— CD1284 programming examples
— Genoatest suite programming example
— CD1284 schematics

1.2.1 References

¢ CD1283 Datasheet
* CD1284 Datasheet

2.0 Introduction

This document describes the CD1283/’ 1284 evaluation board.This board isan IBM PC, | SA bus-
compatible plug-in board.

Thisboard can be used to evaluate the CD1283 or CD1284 devices using the provided software and
documentation, or customer-based software can be used. The board can also function as a
development tool in an easy-to-use environment (IBM PC-compatibl€). Therefore, code
implementation can begin while hardware is in the design/debug phase.

If the serial ports of the CD1283/ 1284 are used, custom cables must be built by the end user.
Section 4.0 on page 7 describes hook-up procedures, jumper settings, and board address
assignments. Section 5.0 on page 9 describes the installation and operation of the demonstration
software.

Application Note 5

u
CD1283/1284 Evaluation Kit I ntGI ®

3.0

Supplemental Information

3.1

3.2

3.3

Interrupts

The board provides optional interface methods of the CD1283/ 1284. These options arein interrupt
selection and optional DMA access for the device. One interrupt is generated by the board for the
CD1283/'1284. Thisinterrupt is selected by the jumper wires on jumper block JP8. The left
column of pins on the jumper block indicate the ISA businterrupt number that can be selected; the
right column of pins has the selection of pins with the interrupt source. Thisinterrupt can be wired
to any |SA bus interrupts appropriate to the system in use.

CD1283/'1284 DMAACK Select

The DMAACK input of the CD1283/" 1284 can be driven from either of two sources:

* The DMAACK input from the ISA bus or an address decode from the on-board address
decoder (see the users manual for the address assignment).This option allows evaluation of the
CD1283/’ 1284 without programming the DMA controller on the PC.

* DMA cycles can be emulated by performing a 16-bit 1/O read or write from the defined
address decode. The selection is made through jumper J1, which should be set to 2-3. The
programmed 1/O method of emulation should be used. Jumper locations 1-2 are reserved for
future devel opment.

Ordering Information

Kit Number: CDK1284-E-AT02A

Software examples on floppy disk and evaluation kit documentation can be ordered separately from
Intel at no additional charge.

Application Note

CD1283/'1284 Evaluation Kit

4.0 Hardware Installation
4.1 System Requirements
The system requirements are:
¢ A PC/AT or compatible with minimum 640K RAM
¢ One available 16-bit expansion slot
* DOS version 3.3 or higher
4.2 Evaluation Board
The evaluation board isan add-on ISA card with atype C | EEE, 36-pin parallel port connector, two
RJ45 serial connectors, aMACH120, and the CD1283/" 1284.
Note: Verify that the CD1283/’ 1284 is the latest version. The device should be printed with CD1284-
10QC-E. If itisnot, please return the board to Intel for replacement.
4.2.1 Switches and Jumpers
The SW includes eight switches; each can be set to ON or OFF to convey certain information to the
PC. A jumper consists of two gold pins that may or may not be connected by a plastic connector
plug. The I/O port address SW1 8-bit pattern is 01001000xxx (binary) or 240h. The card allocates
32 PC |/O base addresses from 0x240 to 0x25F. The description of these valid addressesis
provided in Table 1. Table 2 presents jumper definitions and Table 3 provides switch settings.
Table 1. Switch Setup

Application Note

P,CA(Ij/c?rEsasse Address Description
0x240 RESERVED
0x242 RESERVED
0x244 CD1283/'1284 register address
0x246 CD1283/'1284 reset
0x248 CD1283/'1284 CS
0x24A SVCACKR
0x24C SVCACKT
0x24D SVCACKP
0X250 SVCACKM
0X252 Generate DMAACK for CD1283/'1284.

CD1283/1284 Evaluation Kit

Table 2.

Table 3.

Jumpers

Jumper Description

JP1- DMA Request (DREQ 0, 5, 6, and 7)

JP2- DMA Acknowledge (DACK 0, 5, 6, and 7)

JP3- Motorola o /Intel o format selector for the CD1283/'1284

JP4- Reset switch

JP5- Quickturn connector

JP6- Quickturn connector

JP7- Quickturn connector

JP8- IRQ select for 3 through 15

I1- CD1283/'1284 DMA acknowledge sPeICe;ctor (JP2 or I/O command from the

Eligible Switch and Jumper Settings
w1 sw2 sw3 Sw4 Sws Swe sw7 sws Base
Address

ON OFF ON ON ON ON X X 0x200
ON OFF ON ON ON OFF X X 0x220
ON OFF ON ON OFF ON X X 0x240
ON OFF ON ON OFF OFF X X 0x260
ON OFF ON OFF ON ON X X 0x280
ON OFF ON OFF ON OFF X X 0x2A0
ON OFF ON OFF OFF ON X X 0x2C0
ON OFF ON OFF OFF OFF X X O0x2EQ
ON OFF OFF ON ON ON X X 0x300
ON OFF OFF ON ON OFF X X 0x320
ON OFF OFF ON OFF ON X X 0x340
ON OFF OFF ON OFF OFF X X 0x360
ON OFF OFF OFF ON ON X X 0x380
ON OFF OFF OFF ON OFF X X 0x3A0
ON OFF OFF OFF OFF ON X X 0x3C0
ON OFF OFF OFF OFF OFF X X Ox3EQ

Application Note

[|
I ntel . CD1283/'1284 Evaluation Kit

5.0 Software Installation

The CD1283/’ 1284 demonstration software is provided on one floppy disk with six directories:
¢ 1284: genrn.c and genrn.exe programs to perform the Genoa test suite.

* BOARD: The CD1283/' 1284 eval uation board schematics, MACH120 schematics, and 22V 10
PAL schematicsin OrCadO.

¢ DOC: The CD1283/'1284 technical documentation in PDF (portable document format) for
online viewing.

¢ EVAL1284:Two programsthat demonstrate CD1283/’ 1284 programming, and the operation of
the device.

* MISC1284: Miscellaneous programming examples.
¢ INTERRUPT: An interrupt-driven code program demonstration.

51 Running the Demonstration Software

There should be two PCs when running these two programs; one is the host and the other the target.
1. Copy host1284.exe from the EVAL 1284 directory to the host PC

Copy eval1284.exe from the EVAL 1284 directory to the target PC.

Run host1284.exe on the host PC; simultaneously run eval 1284.exe on the target PC.

Type ‘i’ on thetarget PC to initialize the CD1283/’ 1284 registers.

Type ‘n10’ on the host PC so the interface negotiates to ECP Forward.

o~ DN

Note: For other values of ‘n’ refer to IEEE Std. 1284-1994, page 23, Table 4.
6. Type ‘v’ onthetarget PC to view the CD1283/’ 1284 register contents after the negotiations.
7. Type‘t’ onthe host PC to terminate from the current protocol.
8. Type 'V’ onthetarget PCto list the CD1283/’ 1284 register contents after protocol termination.
Note: The eval1284.exe runs on the CD1284 evaluation board; host1284.exe runs on Warp Nine
Engineeringo (previously called Far Point Communicationsn) parallel port on the host. The Warp
Nine parallel card can be obtained from Warp Nine Engineering directly (phone: (805) 726-4420;

fax: (805) 726-4438; www.fapo.com). The name of the parallel card used by Intel isthe F/PortPlus
parallel card.

Application Note 9

u
CD1283/1284 Evaluation Kit I ntGI ®

6.0

CD1283/'1284 Parallel Channel Programming Guide

6.1

10

The CD1283/’ 1284 parallel channel provides unique features for straightforward IEEE 1284-
compatible interface programming. Many functions are built into the device, such as automatic
negotiation among the various protocols (reverse nibble, reverse byte, ECP, and EPP), built-in on-
the-fly data compression using run length encoding/decoding, simple DMA handshake, and
programmable FIFO threshold. These functions free the CPU from parallel interface interactions
and hel ps eliminate some of the mundane tasks associated with higher-level protocol
implementation.

The parallel channel of the CD1283/'1284 is comprised of two major functional blocks: the local
CPU datainterface and the parallel port control state machine. The CPU interface is further
subdivided into three blocks: a 64-byte FIFO, a data pipeline, and a DMA buffer register. These
major blocks share acom mon interrupt logic block that informs the CPU of conditionsthat require
direct intervention.

Functional Blocks

Although separate entities, the CPU interface and the parallel port state machine are tightly coupled
through a data interface that includes a data transfer buffer/latch and the status/control signals.
Depending upon the direction of data movement within the parallel channel, control and status
indicate the current state of the FIFO and the state of datain the parallel port. In the receive
direction, FIFO control logic moves datainto the FIFO (if spaceisavailable). In responseto a
parallel port request (if spaceis not available) the ‘move request’ is not honored. The paralléel port
remainsin the BUSY state, stopping further transfers from the remote. In the transmit direction,
status signals from the FIFO indicate if datais available to transfer to the remote. If datais
available and the remote is not in the BUSY state, the parallel port transmits a byte out of the FIFO.

If DMA is enabled and the quantity of datain the FIFO is equal to or exceeds the programmed
threshold (receive direction) or is equal to or less than the programmed threshold (transmit
direction), aDMA transfer cycle initiates. The data pipeline logic attempts to fill the FIFO in the
transmit direction; it attempts to empty it when the threshold is reached in the receive
direction.Two registers are used for this determination, the PFTR (Parallel FIFO Threshold
register) and the PFQR (Parallel FIFO Quantity register). Datais aways moved into or out of the
FIFO in 16-bit words; odd bytes must be handled directly by the CPU. For an odd byte, once a
FIFO time-out occursin the receive direction, the CPU removes the remaining byte from PFHR2
(Parallel FIFO Holding register 2). In the transmit direction, an odd byte at the end of a block
transfer is placed in the FIFO through PFHR1 (Parallel FIFO Holding register 1). See Figures 11
and 12 in the CD1284 datasheet for a graphic presentation of the FIFO/data pipeline structure.

The CD1283/’ 1284 DMA port works in conjunction with the system DMA controller. Two
handshake signals, DMAREQ* and DMAACK?*, are provided for communication with the system
DMA controller. When the deviceis ready for aDMA transfer, it activates DMAREQ*, which
remains active until one of three events occur:

1. The FIFO isfull (transmit)
2. TheFIFO isempty (receive)
3. DMA transfers are disabled by the CPU

Application Note

6.2

Note:

CD1283/'1284 Evaluation Kit

The duration of a DMA transfer can be controlled by the threshold setting. For example, if aburst
of 20 words maximum is required in the transmit direction, the PFTR value would equal afull
FIFO (the FIFO is byte-organized but is filled in word increments, where 64 bytes = 32 words)
minus the desired burst size.(in this case, 64 — 40 = 20). When the FIFO quantity falls below this
point, the CD1283/" 1284 activates DMAREQ* and remains in effect until 20 words (40 bytes) are
moved into the FIFO. For each word transferred the system activates DMAACK* once. This
procedure is reversed for the receive direction.

For the receive direction, if the same 20-word burst is desired, the threshold should be set to 40.
When the FIFO quantity reaches this point, the DMA logic attempts to empty the FIFO. Since the
two holding registers areincluded in the burst count, the threshold should actually be set to two less
than the desired burst length, or in this case, 38.

After deviceinitialization, the CD1283/' 1284 parallel channel enters Compatibility mode where
the parallel port is an input-only CentronicsO -compatible port. The port receives data; all
handshake signals operate as defined for Compatibility mode in the | EEE specification. For any
other mode and to move data bidirectionally, the CD1283/' 1284 must negotiate with aremote
master 1284 device. Also, the CD1283/' 1284 must have the negotiations enabled for desired
mode(s). When the remote master attempts negotiations into one of the other modes, any enabled
mode is accepted by the device.

The CD1283/' 1284 cannot move into one of the bidirectional modes on its own; aremote master is
required. Modes are enabled by the NER (Negotiation Enable register). Typically, all modes would
be enabled so that the peripheral communicates in any mode requested by the remote. However, if
only some modes are supported, only the bitsin the NER corresponding to those modes are set.

When a successful negotiation completes, the CD1283/' 1284 posts a CPU interrupt notifying the
change. The NSR (Negotiation Status register) indicates the negotiation results and mode entered.
The status bitsindicate if the negotiation completed correctly, NegOK, or with error, NegFl. If an
invalid negotiation was attempted (the extensibility request bits on the bus during negotiationswere
not a recognized value), then the NegFI status bit is set along with the Invalid status bit. If an
invalid state was requested or entered, the port returns to Compatibility mode (default); any port
failures force areturn to Compatibility mode. Refer to the |EEE Std. 1284-1994 specification for a
detailed discussion of the negotiation sequence.

Using the Parallel Channel

Several steps must be performed before the parallel channel can be used. For example, basic
channel initialization must be performed. Examplesinclude: setting the correct count for the short
pulse duration based on the frequency of the master device clock, setting the FIFO threshold,
enabling supported modes, and so on. Once the initialization operations complete, the CPU should
set up the system DMA controller for receiving and transmitting data. Finally, the interrupts, DMA,
and parallel port transfers should be enabled in the CD1283/ 1284. Each of these initialization
operations are detailed in Section 6.2.1.

For the purposes of this document, the operating frequency of the clock (CLK) is25 MHz. Also,
the two seria channelsin the CD1283/’ 1284 are ignored. Manual control of the channel
through Manual mode and the Manual Data register are not discussed; this modeis
intended primarily for testing and special cases and is not considered part of normal
operation. Flowcharts of the various operations are provided in Section 7.3.

Application Note 11

u
CD1283/1284 Evaluation Kit I ntGI ®

6.2.1

6.2.1.1

12

Note:

Channel Initialization

Theinitialization of the channel can be performed in two sequences: First the parallel port and then
the data pipeline.

Parallel Port

During initiaization of the parallel port, the supported modes must first be selected by setting the
appropriate enable bitsin the NER. The E1284 bit in the PCR (Parallel Configuration
register) must be set for any higher-level parallel port operations. The ETxfr bit in the
PCR must also be set for transfers on the port. However, this bit can be set after the DMA
controller and interface have been initialized. If transfers are enabled and begin before any
DMA transfers can occur, the FIFO fills and the port isthe BUSY state.

Thisis not an error but may be inconsistent with the rest of the system programming.

One step that must be performed for proper operation of the parallel interface is setting the
minimum pulse width to 500 ns, as defined in the | EEE specification. This pulse width
duration alows maximum data transfer performance; however, longer pulse widths are
allowed.

The pulse width is set by the value programmed in the SPR (Short Pulse register). The SPRisa
simple counter/divider driven by the CLK input therefore, the value loaded depends upon
the operating clock frequency of the CD1283/’ 1284. For a 25-MHz clock, the proper
valueis 13; this value produces a minimum pulse width of 520 ns (as close to 500 ns as
can be generated with a 25-MHz clock).

13 x = 520ns

25MHz

For EPP mode support, load the EAR (EPP Address register) with the value driven on the parallel
port during an EPP address read cycle.

The pin control registers are not used during normal, non-compatible mode 1284 transfers with the
parallel port. One exception is during EPP mode. In this case, three signalsin the OVR
(Output Value register) are user-defined and are labeled as USER1-USERS3. If these three
signals are used, then set their value in the OVR before EPP mode is entered.

In Compeatibility mode, the OVR delivers port status to the host. This status might consist of paper
empty, fault, and so on. To set the status pins, the host must place the port into Manual
mode, set the desired status in the OV R, then resume normal operation.

Thefina stepininitializing the parallel port is setting the interrupt enable bits as required in the
PCIER (Parallel Channel Interrupt Enable register). Under normal operating conditions, al
interrupts should be enabled. However, if some modes are supported, not all bits are set.
For example, if EPP mode is not enabled, the EPPAW (EPP Address Write) interrupt
enable need not be set.

This completes parallel port configuration. The next step is configuring the data path registers.

Application Note

In

6.2.2

®

CD1283/'1284 Evaluation Kit

Data Pipeline

The data pipeline has registers for FIFO control, DMA circuitry, and the timer. There are also
several registers that display the current status of the entire pipeline.

The FIFO data threshold used for triggering DMA transfersis set in the PFTR. During operation,
the CD1283/' 1284 compares this value to that in the PFQR (Parallel FIFO Quantity
register) asa DMA burst requirement. In the receive direction, if PFQR is greater than
PFTR, the device requests aDMA transfer to empty the FIFO. DMA remains active until
the last full word (16-hits) istransferred; aremaining odd byte is left in PFHR2 for the
CPU to remove manually. In the transmit direction, if PFQR islessthan PFTR, DMA
transfers occur and remain active until the FIFO isfull.

The CD1283/' 1284 ensures that datais not trapped in the FIFO (‘stale’) if the amount of data
received does not reach the threshold programmed in the PFTR. This featureis
implemented with a stale data timer. The timer duration is set by the value placed in the
SDTPR (Stale Data Timer Period register). The timer is driven by a clock generated by
dividing the master device clock (CLK) by 250. This ‘intermediate’ clock isthen
prescaled by afixed divide-by-ten a gorithm to produce the basic stale timer period. Thus,
with a 25-MHz clock, the resolution of thetimer is0.1 ms.

Each time a character is placed in the FIFO, the SDTCR (Stale Data Timer Count register) is
loaded from the value in the SDTPR. If new data does not arrive to restart the timer, it
expires after the programmed duration set in SDTPR. Thisforcesthe ‘stale’ condition to
become true and triggers a DMA transfer to empty the FIFO.

The purpose of thistimer isto determine when ablock transmission is complete. Data arriving can
be considered to be ablock or ‘frame’ of data, but the normal protocol of moving parallel
data between a host and a peripheral does not include the concept of a message therefore,
does not have a defined way of delimiting one message from another. However, once a
text block transmits (or commands transmit from a high-level page-description language
such as PostScript), there is a pause while a new block is prepared. This pause enables the
timer to expire, allowing the local CPU to assume the transmission is compl ete.

There are several miscellaneous control bits for special pipeline operations. These bits arein the
PACR (Paralel Auxiliary Control register). During the initialization process, only two bits
in thisregister are used, Unfair and Async DMA. The Unfair bit is associated with the
seria channels. The Async DMA bit provides aternate timing for the DMA control
circuitry. These bits are discussed in the CD1284 Datasheet, but are not relevant to this
document.

The vector driven on the data bus during a parallel channel service acknowledge cycle
(SVCACKP* input) is set by the LIVR (Local Interrupt Vector register). The most-
significant five bits are set to the appropriate value for the system interrupt service routine.
The least-significant three bits are supplied by the CD1283/ 1284 and indicate the
interrupt source within the parallel channel (pipeline, parallel port, or both).

The PFCR (Parallel FIFO Control register) must be set to enable the channel and any supported
specia operations. For beginning any activity within the parallel channel, a FIFO reset
command and the desired DM Adir must be issued. Thisinitializes the channel and setsthe
direction of the pipeline and parallel port. This procedure must be performed whenever
the direction of the parallel channel is changed. The RLEen bit must also be set if Run-

L ength data compression is supported in ECP mode.

Application Note 13

u
CD1283/1284 Evaluation Kit I ntGI ®

6.3

6.3.1

6.3.2

14

Channel Operation

The operation descriptions that follow assume that the interface isin Compatibility mode (default
state after device reset) and that the preceding initialization procedures were performed.
Final initialization includes setting the IntEn bit so that interrupts can be generated by the
parallel channel. The ErrEn bit must also be set if interrupt sources in the Data Error
register are to be included in interrupts from the channel. Finally, the DMAen bit is set to
enable DMA transfers.

The parallel channel operates in one of many modes and moves freely between modes at the
command of the remote master. The CD1283/ 1284 can never change modes on itsown; it
must always wait for the master to compl ete the negotiation sequence. Available modes
are enabled individually by the control bitsin the NER.

EPP mode operation differs significantly from other modes. It does not incorporate
‘receive’ and ‘transmit’ but behaves more like a processor address/data bus. As such, itis
not included with the other modes that follow. See Section 6.4 on page 17 for more details
on EPP mode.

Receiving Data — Compatibility Mode

Asdata arrives on the parallel port, it beginsfilling the FIFO. The first two bytes will fall through
to the bottom of the FIFO and then into the holding registers, PFHR1 and PFHR2.
Subsequent data continues filling the FIFO. DMA transfers when the programmed
threshold is reached and continue until the FIFO and holding registers are empty.
Incoming data continue filling the holding registers and FIFO until the threshold is once
again reached, then DMA transfers commence. The DMA request signal (DMAREQ*)
remains active until the FIFO is empty, in this way the programmed threshold sets the
burst duration of the DMA transfer.

If incoming data ceases for a period longer than the programmed stale data time-out period, one of
two situations occur. If there is no data in the pipeline because an even number of bytes
was received, nothing occurs, except the Stale bit in PFSR is set.

Odd transfers leave a single character in the holding register because the DMA interface only
performs 16-bit transfers. As such, if an odd number of bytesisreceived, atime-out occurs.
In addition to atime-out indication, the OneChar status bit is set indicating that the CPU
must manually remove the last byte of the transfer from the holding register.

The CPU must then toggle the CIrTO bit in the PACR to remove the Time-out interrupt status and
rearm the time-out mechanism for the next transfer from the parallel port.

Receiving Data and ECP Mode

If the remote master optsto use ECP mode, it enter negotiations with the CD1283/ 1284 to set this
mode. The local CPU must have previously enabled ECP mode in the NER. Upon
completion of the negotiation sequence, the CD1283/’ 1284 posts an interrupt with status
in the NSR indicating that a negotiation change occurred. The new modeisindicated in
the four-bit result code. For the purpose of this document, it is assumed that the transfer
direction remains receive.

Application Note

6.3.3

CD1283/'1284 Evaluation Kit

Unless RLE data compression is enabled and RLE compressed datais being received, basic
operation of the parallel channel in ECP mode receive is the same as Compatibility mode.
DMA transfers commence when the level in the FIFO reaches the programmed threshold
and continues until the FIFO is empty or atime-out occurs due to a single character
remaining in the holding registers or no more data remains.

If RLE compression is enabled and RL E-compressed data is being received, the behavior of the
pipeline (the holding registers plus the DMA buffer) changes slightly. RL E-compressed
datais sent over the paralld interface as a two-byte sequence; a command and data byte
(refer to the IEEE 1284 Std. specification for a complete description of ECP mode RLE
compression.). The command byteindicates that this pair is RLE compressed and includes
the byte count; the second byte is the data to be replicated. The pipeline stores the count,
then repeats the data while decrementing the counter. If the resultant count of repested
charactersis odd, then the last character in the compressed sequence is joined by the next
character in the FIFO to form the full 16-bit word for DMA transfer. If the odd character is
the last character in the transfer and atime-out occurs, then the OneChar interrupt is
generated.

One other function is available in ECP mode. In addition to RLE compression using RLE
command/data sequences, an address can be received using an address-command/address
byte sequence. When the CD 1283/’ 1284 receives an address command, it stops DMA
movement and posts an interrupt indicating that a ‘tagged’ byte has been received. The
CPU must manually remove the tagged character from the holding register. The PFSR and
HRSR (Holding Register Status register) determine that a tagged character has been
received and which holding register itisin. After the tagged character isremoved from the
holding register, normal data movement continues.

Note that if RLE compression is not enabled in the PFCR, the receipt of an RLE compressed data
sequence causes data movement to stop and a tagged-data interrupt to occur.

Changing Directions

To send data to the remote master, the link must be reversed. Reversal occurs when the master
negotiates into one of the directions capable of reverse transfers (Reverse Nibble, Reverse
Byte, ECP, or EPP) and the local CPU has data to send. Status indicating the availability
of datais provided on the parallel interface during the negotiation sequence and differsin
implementation for each mode; however, the procedure used by the local CPU isthe same.
EPP is a special case of reverse-data transfer and is quite different from the others. The
EPP method of moving datain the reverse direction is discussed in Section 6.4.

It isimportant to remember that the CD1283/’ 1284 cannot initiate areversal; it must wait for the
remote master to initiate the reversal with a negotiation sequence. The CD1283/° 1284 can
request a direction reversal through the RevRq bit in the Special Command register.

The CD1283/" 1284 requests the reversal by using acommand bit in the SCR, RevRq (bit 0). When
thelocal CPU isready to send data to the remote master, it sets RevRqg and waits for the
remote to perform a negotiation sequence. Then, the CD1283/' 1284 activates the
appropriate signal, nDataAvail, to indicate that reverse datais available. When
negotiations are complete, the CD1283/ 1284 posts an interrupt to the local CPU
indicating a direction change (the DirChg bit is set in PCISR). Upon receipt of this
direction change interrupt, the CPU should proceed to change the direction of the parallel
channel through a command to the PFCR. Thisis done by setting the FIFOres and
DMAUdir bits. Program the PFTR next if the threshold isto be changed for the transmit
direction.

Application Note 15

u
CD1283/1284 Evaluation Kit I ntGI ®

6.3.4

6.3.5

6.3.6

16

Finally, after programming the system DMA controller, the DMAen bit is set in the PFCR to
initiate the actual reverse data transfer. As specified in the IEEE Std. 1284 specification,
this data pipeline direction change is allowed to take up to an infinite amount of time to
occur. When the pipeline and FIFO have been reversed, DMA transfers begin filling the
FIFO. When the first data byte is available to the parallel port, it begins moving the data
out with the defined Strobe/A cknowledge sequence.

With the exception of EPP mode, transmitting data to the remote in Reverse Nibble, Reverse Byte
and ECP modes occursin similar ways. Aslong as datais available, the nDataAvail status
bit remains asserted and the remote continues to be fed data. When there is no longer any
datain the FIFO, nDataAvail deasserts, at which time the remote master might negotiate
back into aforward data direction and return to forward data transfers. However, thisis
unnecessary; the link may beleft in thereverseidle state. If thisisthe case or if more data
arrivesin the FIFO, data movement can start again.

Transmit Data — Reverse Nibble Mode

When data (status or 1D request responses) must transfer from local memory to the remote master,
thelocal CPU initiates areversal as previously stated. Data is transmitted in four-bit
nibbles using the Centronics-defined status lines as data lines rather than using the actua
data signals.

This method is used if reversed data transmission is necessary, but the data lines are not
bidirectional, as could be the case on older host systems. Each byte of data is transmitted
using two nibbles with the least-significant four bits being sent first. The transmission
speed is necessarily slow due to the requirement to.break the data up into the four-bit
nibbles (transmission speed is half that if full bytes are being transmitted).

Handshake signals, Strobe, Acknowledge, and Busy are implemented using the reverse sense. The
handshake isin the forward direction. The strobe from the local to the remote uses the ACK*
signal. The acknowledge from the remote to the local usesthe STROBE signal. BUSY is
implemented using nAutoFeed as BUSY.

Transmit Data — Reverse Byte Mode

Reverse Byte mode is similar to Reverse Nibble mode except that data is moved using the parallel
datasignal lines as the data lines, rather than the status lines. Generally, new host systems
provide a bidirectional data interface so afull, byte-wide data path existsin both
directions. The Strobe, Acknowledge and Busy functions are implemented using the same
signals as used in Reverse Nibble mode.

Transmit Data — ECP Mode

ECP mode transmit is similar to Reverse Nibble and Byte modes, but adds the capability to send
RLE-compressed data. It aso includes the ability to send the channel address sequence, as
isthe case during receive data.

If RLE compression is enabled, the data pipeline scans incoming data for identical sequences of
characters. If the number of duplicate sequential charactersis greater than two, the pipeline
begins to count the characters while maintaining a copy of the character. When a non-
matching character arrives or the count of characters reaches 128, the pipeline logic
generates a tagged, two-byte sequence including the command and data. The resultant

Application Note

6.4

CD1283/'1284 Evaluation Kit

two-bytes are placed in the FIFO along with the tag status. When this tagged reaches the
parallel port, it transmits while activating the appropriate control signals to indicate that it
isan RLE-compressed command.

Sending a channel address requires that the local CPU manually place the tagged-byte addressin
the PFHR1 after setting the SetTag bit in the PFCR. When the tagged byte reaches the
parallel port, it is transmitted with the control signals set to indicate an address byte.

EPP Mode

EPP mode differs significantly from other modes, primarily because its behavior is more like a
microprocessor interface bus than atypical peripheral parallel interface. It defines both
address and data cycles using the handshake signals to indicate address reads or writes,
and datareads or writes. It is aso the case that all transactions on the ‘bus’ areinitiated by
the master, so thereis no equivalent to areceive or transmit operation. It is not clear how
this mode should be used in a peripheral interface (printer, scanner, and son on), but it is
included in the CD1283/’ 1284 so asto be completely compatible with the IEEE 1284 Std.
specification.

EPP mode has the capability of high-speed data movement as long as it does not use an address
cycle with each data transfer cycle. If this ‘burst’ modeis used, minimal local CPU
interrupt overhead is required. Each time an address write is performed on the parallel
interface, the value written is placed in the EAR (EPP Address register) and, if the
EPPAW bit is set in the PCIER, an interrupt is generated. However, if cycles are primarily
data writes, then the FIFO and pipeline perform in the same manner as the other receive
modes: Data flows into the FIFO then into the holding registers, and when the
programmed threshold is reached, DMA transfers commence and continue until the FIFO
isempty.

Reading from the parallel port while in EPP mode requires that the pipeline be reversed before the
first read transaction occurs. Thisis because the CD1283/' 1284 isnot in control of the data
movement handshake; the remote controls movement through the data read cycle.
Therefore, the pipeline must be reversed and the FIFO filled before the remote can read
the data. For this switch to occur, some higher level protocol must be implemented in
software so that the message contents indicate areversal is requested.

Application Note 17

CD1283/'1284 Evaluation Kit In

7.0 Programming Examples
This section provides specific programming examples for various operations required by the
CD1283/’ 1284. These examples expand upon examples shown in the CD1284 Datasheet
and include parallel channel initialization and code to handle a direction reversal, the
single remaining character |eft in the pipeline due to an odd byte count, and so on. These
examples are in Borland C++.
7.1 Initialization Code
Initialization of the parallel channel consists of setting the SPR, selecting modes supported during
negotiation, setting the stale data time-out value, initiaizing the FIFO, setting the source
for acceptabl e inter-rupts, and other operational functions.
par_init()
/* First, issue chip reset command */
out port b(GFRCR, 0x00); /*Cl ear the GFRCR*/
out port b(CAR, 0x02); /* Set channel 2 (could also use 3) in CAR */
whil e (inportb(CCR) != 0x00)
; /*Wait for CCR to clear */
out port b(CCR, 0x81);
whi | e inportb(GFRCR) == 0x00)
; /* Wait for GFRCR to be set */
/* Start by initializing the parallel channel */
out port b(CAR, 0x00); /* Set channel 0 in the access register */
out port b(SPR, 0x0D); /* Assume 25MHz cl ock, set short pul se value */
out port b(NER, Ox4F); /* Support all npdes except EPP */
out port b(PCR, 0x80); /* Set manual node */
out portb(OVR, 0x58); /* Start in Conpatible Mde, set status signals: */
/* PError =0 */
/* SELECT = 1 */
/* nFault = 1*/
/* nACK = 1 */
out port b(PCl ER, 0x37); /* Enable all interrupts except EPP address wite */
out port b(PCR, 0x60); /* Enabl e 1284 negotiations and transfers */
/* Next, set up the pipeline control registers */
/* Clear the GFRCR */
out portb(LI VR, 0x00); /* Clear the LIVR set device IDto 0 */
out port b(PFCR, 0xD8); /* Enabl e pipeline DVMA, set the direction to input, */
/* enable interrupts (but not error ints) and reset*/
/* the FIFO. At reset, it is assuned that the starting */
/* direction will be input. */
out port b(PFCR, 0x58); /* Clear FIFOres to conplete reset operation */
out port b(PFTR, 0x20); /* Set the DMA threshold for receive (burst = 32) */
out port b(SDTPR, 0x64); /* Set the stale data time-out period to 10nms */
out port b(PACR, 0x02); /* Set asynchronous DMA node */
18 Application Note

7.2.1

CD1283/'1284 Evaluation Kit

Service Requests

When the CD1283/' 1284 parallel channel requireslocal CPU intervention, it posts an interrupt
with the status in the PIVR indicating which section of the channel, the parallel port or the
pipeline, requires service. Each section has its own status register to specify which of
several possible sourcesis the cause of the interrupt. The following sections provide
detailed descriptions of the interrupt sources and software examples of service routines.

Parallel Port

The parallel channel can post requests for service from either the pipeline or the port. This section
discusses service requests from the port. Section 7.2.2 on page 21 discusses the pipeline.

Service requests from the port can occur when one or more of several events happen.
These requests are individually enabled by the following bitsin the PCIER:

¢ nINIT: Theremote master pulsed the ninit signal on the parallel interface (Compatibility mode
only).

¢ |DReg: During negotiations, the remote master requested adevice ID.

¢ DirCh: The remote master reversed the direction of the channel. This generally occursin
response to a data available state set by the CD1283/' 1284.

* EPPAW: An EPP address write cycle occurred on the parallel port (EPP mode only).

* SigCh: One of the programmed signal transitions (ZDR or ODR) occurred on the parallel port
(Manual mode only).

* NegCh: The remote master performed a negotiation and the state of the port has changed.

Refer to the CD1284 Datasheet for the service request handling code. The code following segment
example shows how service of the parallel port request might occur. This code segment
example might be called in response to the ‘ service _par’ routine shown in the CD1284
Datasheet and is the routine called ‘ service_par_chan’.

Many of the reactions to these interrupts are system-specific to allow useful examples to be shown
in documentation. However, some requests have general responses that can be shown in
example code. These responses must make a change to device operation, for example,
direction reversal of the parallel channel.

Thefirst step in responding to the parallel port service request isto read and parse the
contents of the interrupt status register, PCISR. The following is an example of this
routine. Note the final command issued at the completion of the routine; it is required that
the PCISR be cleared by the local host CPU to remove any pending requests.

/* This routine is called by the nain parallel channel interrupt handler,

servi ce_par*l/
/*(shown in the data book). */

service_par_chan()

{

char status;

status = inportb(PCl SR); /* Get the interrupt sources fromstatus register */
while (status){ /* Do all interrupt sources*/
switch (status) { /* The case statement is used to prioritize the response

Application Note 19

u
CD1283/1284 Evaluation Kit I ntGI ®

20

*/

case 0x01: /* This exanple sinply steps through each source */
nlnit();
status & OxFE;, /* Cear this status, recycle */
br eak;

case 0x02:
| DReq() ; /* | DReq could also include a Mde change */
status &= OxFD; /* Routine should also check for NegCh */
br eak;

case 0x04:
DirCh();
status &= OxFB;
br eak;

case 0x08:
EPPAW() ;
status &= OxF7;
br eak;

case 0x10:
Si gCh();
status &= OXxEF;
br eak;

case 0x20:
NegCh();
status &= OxDF;
br eak;

defaul t:
br eak;

}

}

out port b(PCl SR, 0x00); /* C ear pending requests */

out portb(PFCR, inportb(PFCR) & OxEF); /* Toggle IntEn to clear pending request */
out port b(PFCR, inportb(PFCR) | 0x10);

}

The ninit handling is system-dependent, as is the response to a SigCh interrupt. The ninit interrupt
only occursin Compatibility mode; the SigCh interrupt only occursin Manual mode. ninit
might be used as way to force the printer into areset condition. Signal changes can only
generate an interrupt if Manual mode is being used and the signals are used as status/
control. In other modes, the output signals are under automatic control of the parallel port
and the input signals are used by the remote host as part of the data transfer protocol.

Two responses require more clarification because specific changes must be made to the device: the
DirCh and IDReq interrupts. An IDReq interrupt request response could follow somewhat
the same.procedure as the DirCh interrupt response, since it normally involves a direction
change and transmission of the ID string. The following routine shows one way of
responding to the DirCh interrupt.

The following routine is an example of servicing interrupts from the data pipeline and directing
processing to the appropriate routine. It is beyond the scope of this document to attempt to
show in detail how the system might respond to these interrupt conditions asthat is
dependent upon a number of system architecture parameters. In general, the response to a
‘Time-out with OneChar’ isto remove the remaining character and placeit in the receive
buffer; * Time-out without OneChar’ the buffer might be tagged as complete. An interrupt
with HRtag indicates that either an ECP tagged address was received and a change in the
virtual device address made. If thisis the purpose of the ECP, device addresses in the
applicgtg Ioer:]i or an RLE command were received, but automatic RLE decompression was
not en :

/* This routine responds to the direction change interrupt by issuing the required

commands to flush the FIFO and reverse the direction of the data path. It is
assunmed that all data has been renoved fromthe FIFO before the DirCh interrupt was
generated. Optionally, the routine could wait for the FFnpty bit to becone active

Application Note

[|
Intel . CD1283/'1284 Evaluation Kit

in the PFSR before the reversal is initiated. The general procedure is to set the
DMAdir bit to 1 for transmit, O for receive and then set the FIFOes bit. Setting
FIFOres is required as this is a conmand to initialize the direction circuits and
flush the FIFO. FIFOres will clear automatically after the action is conplete. */

extern char direction; /* dobal direction value */

Di r Ch()
{
char pfcr_val; /* Holding location for current status */
pfcr_val = inportb(PFCR);
switch (direction) {
case 0:
direction = 1; /* Change direction to transmt */
pfcr_val | = OxAO0; /* Set FIFOres bit and set DMAdir = 1 */
out portb(PFCR, pfcr_val);/* |ssue comand */
br eak;
case 1:
direction = 0; /* Change direction to receive */
pfcr_val &= OxDF; /* Set DMADir = 0 */
pfcr_val | = 0x80; /* Set FIFOres bit */
out portb(PFCR, pfcr_val); /* Issue command */
br eak;
defaul t:
br eak;
}
}
7.2.2 Pipeline

There are three sources of interrupts from the pipeline
1. Those that occur when the stale data timer expires.
2. Those generated at the arrival of tagged data when the port is operating in ECP mode.
3. Those due to data handling errors on the part of the local system.

The stale data timer causes the Time-out condition to be set in the PFSR when it decrementsto zero
and thereis either asingle or no characters remaining in the data pipeline. As explainedin
the CD1284 Datasheet, this timer restarts whenever a new character is placed in the FIFO
by the parallel port. Once the regular arrival of data stops, the timer expires and, if the
FIFO is empty, the Time-out interrupt is posted. If there were an odd number of bytesin
the transferred block, then the OneChar statusis also set because there would be one
character remaining in the PFHR2. If there are two or more characters remaining in the
FIFO, the expiration of the timer causesa DMA cycle to be initiated to empty it, then the
Time-out interrupt or the Time-out with OneChar interrupt is posted.

The‘tag’ interrupt is generated if ECP-tagged datais received by the port. ECP tagged data can be
either an ECP address or RLE-compressed data. If RLEen is set in the PFCR, RLE datais
automatically decompressed and no interrupt is generated. If RLEen is not set, the receipt
of RLE-compressed data causes an interrupt, which local host software must decode
manualy.

Data error interrupts are only generated if the DataErr bit is set in the PFCR. If DataErr is set, the
occurrence of any of the conditions described in the Data Error register cause an interrupt
to be posted. These errors are induced by erroneous read/write operations by the local
system, such as reading an empty holding register or writing to the DMABUF register
when it already contains data. The data error interrupt is primarily intended for debug
purposes and would not be used during normal system operation.

Application Note 21

u
CD1283/1284 Evaluation Kit I ntGI ®

7.2.3

22

/* This routine is called by the main parallel channel interrupt handler,
service_par. */

/* 1t checks for either a Tine-out or Tag interrupt and directs the service
accordingly. */

/* 1f a Tine-out was posted, the ClearTO bit in PACR nust be toggled in order to */
/* clear the Time-out status in PFSR */

servi ce_pi peline()

{
char status;

status = inporthb(PFSR); /* Read the status register */
switch(status & 0x30) {/* Just check status of bits that cause ints */

case 0x10:
HR tag(status); /* Holding register has tagged data */
br eak;
case 0x20:
Ti me_out (status); /* Tine-out, check OneChar, etc. */
out port b(PACR, inportb(PACR) | 0x08);/* Toggle CearTO bit */
out port b(PACR, inportb(PACR) & OxF7);
br eak;
defaul t: /* Must be both */
Ti me_out (st atus);
out port b(PACR, inportb(PACR) | 0x08);/* Toggle CearTO bit */
out port b(PACR, inportb(PACR) & 0xF7);.HR tag(status);
br eak;
}
out port b(PFCR, inportb(PFCR) & OXEF); /* Toggle IntEn to clear
pendi ng request */
?ut port b(PFCR, inportb(PFCR) | 0x10);

Miscellaneous Pipeline Routines

For diagnostic purposes, it is possible to perform a ‘loopback’ test of the pipeline to verify correct
movement of datain and out of the FIFO, aswell astesting RLE compression/
decompression. Doing thisinvolves placing datainto the FIFO through the pipeline logic
in atransmit operation then reversing the direction and removing the data after updating
the quantity value in the PFQR (Parallel FIFO Quantity register). All of thisis done
without enabling transfersin the parallel port so that the device will not attempt to actually
move the data over the paralld interface. To facilitate this, the FIFOlock bit is set in the
PACR (Paralld Auxiliary Control register). The following is an example of this operation:

/* This routine tests proper operation of the parallel FIFO using a ‘pseudo’
| oopback */

/* operation. The routine first sets the FIFO ock bit in PACR to prevent the
parallel port */

/* fromtrying to nove the data out of the FIFO Data is then noved into the FIFO
via the */

/* PFHR2 (could al so use PFHRL using single bytes instead of words, followed by */

/* reversing the direction and updating the quantity value in PFQRto ‘fake a full
FI FO */

Application Note

In CD1283/'1284 Evaluation Kit

/* Data read out is conpared with the data put in to verify correct operation. */

#define fail 1;
#defi ne pass 0;
| oopback() /* Loopback wi thout RLE conpression test */

{

int pattern[] = {0x11, 0x22, 0x44, 0x88, O0x55,0xAA};/* Test pattern, wal king
one’'s */
int i, tenp;

/* Set up channel for output and fill the FIFO */

out port b(PACR, 0x10); /* Lock FIFO */

out port b(PFTR, 0x20); /* Set threshold value (only needed in DMA, really) */
out port b(PFCR, 0xAO0); /* Set direction and FI FO reset */

out port b(PFCR, 0x20); /* Clear FIFO reset */

for (i =0; i < sizeof(pattern); i++) { /* Fill FIFOwth first pattern */

while (!(inportb(HRSR) & 0x04))

; /*Wait for DMAbuffer to be enpty */
outport (PFHR2, pattern[i]); /* Stuff word into buffer */

}
if ((temp = inportb(PFQR)) != 58){ /* Read the quantity register, should be (64
- 6) */
out port b(PACR, 0x00); /* Unl ock FIFO */
return(fail); /* Quantity should have been 6 */
}
out port b(PFCR, 0x00); /* Reverse direction */

outportb(PFQR, (64 - tenp));/* Load new quantity for receive direction */
out Dort b(PFTR, 0x01); /* Set a low threshold (only needed in DVA, really) */
for (i = (sizeof(pattern)*2); i > -1; i--) {

whi | e(linportb(HRSR) & 0x20)

tenp = inportb(PFHR2); /* Read data out when PFHR2 is full */
if (temp !'= pattern[i]){ /* Read data */
out port b(PACR, 0x00); /* Unlock FIFO */
return(fail);

}
}
out port b(PFCR, 0x80); /* Reset FIFO and Reverse Direction */
out port b(PFCR, 0x00); /* Reverse Direction */

if (inportb(HRSR) & 0x20){
out port b(PACR, 0x00); /* Unlock FIFO */
return(fail); /* Shouldn’t have been any chars left */

}
out port b(PACR, 0x00); /* Unlock FIFO */
return(pass);

This same general loopback method can be used to test RLE compression/decompression. To
perform this test, the pattern placed in the FIFO should have a number of repeating values
(greater than 2) and RLEen must be set in the PFCR. Also, to have RLE compression/
decompression function, the data must be placed into, and removed from the pipeline
through the DMA buffer.

Application Note 23

u
CD1283/1284 Evaluation Kit I ntGI ®

24

After loading the FIFO, the PFQR should contain a value that shows compression
occurred. For example, if arepeating pattern of charactersthat is six inlength is placed in
the FIFO aong with one additional, non-matching character, the PFQR should have a

count of three, two used by the compressed data and count/tag plus the single character
that did not match the pattern.

Application Note

7.3 Flowcharts

CD1283/'1284 Evaluation Kit

This section provides flowchart examples of interrupt-driven and polling method code for the

CD1284.

Figure 1. Polling Method

Hardware Reset

Y

Software Reset

Y

Initialize Device

Poll Device Again

Poll Device Again

Service
DMA
Request

Change
Direction

Return ID
To Host

DMAREQ
Set

Reset
Printer

Y

SRP SET

PPort Set

NegCh Set

Y

N

*00H

DataErr

FIFO Full or
FIFO Empty

HR Data or
HR Tag

Application Note

Service Service Service Service Service
Negotiation Signal Error Appropriate FIFO
Note: Change Change Interrupt Holding
It may not Interrupt Register
be necessary
to poll the PFSR
if DMA requests are Y Y Y Y Y
enabled. With DMA
requests enabled, the
DMAREQ BLINT in SVRR can be polled to determine when an FIFO
threshold is exceeded. If DMA requests are disabled, the PFSR must
be polled to determine when to move data to/from the FIFOO.
A8706-01
25

CD1283/'1284 Evaluation Kit In

Figure 2. Interrupt-Driven Method

Hardware Reset

Y

Software Reset

Y

Initialize Device

Wait For Next Service Request

d A

Y Note:

The DMAREQ signal can be
connected to an interrupt
request input on the processor
or interrupt controller to make
a system interrupt driven.

Any
Interrupts

Error — Glitch on
ServicingReq Pin

Service DMA DMAREQ SRP Set
-
Request
FIFO Full or
Pipeline Set - FIFO Empty
- QSR
HR Data or
PPort Set HR Tag
DataErr
Change
<7 Direction
Return ID NegCh Set "
nl To Host)
Test
<] Reset PFSR
Printer
Y Y
Service Service Service Service Service
Negotiation Signal Signal Appropriate FIFO
Change Change Change Holding
Interrupt | | Interrupt Register
Y Y Y \ (
A8707-01

26 Application Note

In CD1283/'1284 Evaluation Kit

8.0 PAL Equations and Schematic

This section includes PAL equations for the MACH120, and the 22v10 PAL device, and a
schematic for the evaluation board.

PAL Equations

;PALASM Design Description

; Declaration Segment ------------
TITLE ADDRESS DECODER FOR 22V10

PATTERN

REVISION 2.0

AUTHOR NIMA TAIE-NOBARIE

DATE 06/09/97

CHIP _1284pal2 PAL22V10

; PIN Declarations ---------------
PIN 14 SA10 COMBINATORIAL ; INPUT

PIN 15 SA9 COMBINATORIAL ; INPUT
PIN 16 SA8 COMBINATORIAL ; INPUT
PIN 17 SA7 COMBINATORIAL ; INPUT
PIN 18 SA6 COMBINATORIAL ; INPUT
PIN 19 SAS5 COMBINATORIAL ; INPUT
PIN 20 SA4 COMBINATORIAL ; INPUT
PIN 21 SA3 COMBINATORIAL ; INPUT
PIN 9 Swi COMBINATORIAL ; INPUT
PIN 8 SW2 COMBINATORIAL ; INPUT
PIN 7 SW3 COMBINATORIAL ; INPUT
PIN 6 SW4 COMBINATORIAL ; INPUT
PIN 5 SW5 COMBINATORIAL ; INPUT
PIN 4 SW6 COMBINATORIAL ; INPUT
PIN 3 SW7 COMBINATORIAL ; INPUT
PIN 2 SwW8 COMBINATORIAL ; INPUT
PIN 22 COMP1 COMBINATORIAL ;

PIN 23 /IOREQ COMBINATORIAL ; OUTPUT

; Boolean Equation Segment ------
EQUATIONS

COMP1 = ((SA10 :+: SW1) * /(SAQ +: SW2))*(/(SA8 :+: SW3) * [(SAT :+: SW4))
IOREQ = COMP1 * /(SA6 :+: SW5) * [(SA5 :+: SW6)
:IOREQ = COMP1 * COMP2 * COMP3

; Simulation Segment ------------
SIMULATION

;TRACE_ON IOREQ
;SETF SW1 /SW2 SW3 SW4 /SW5 SW6 SW7 SW8
;TRACE_OFF

Application Note 27

CD1283/1284 Evaluation Kit

28

;PALASM Design Description

TITLE MACH120 PLD
PATTERN

REVISION 2.0
AUTHOR Nima Taie-Nobarie
DATE 06/06/97

CHIP _1284PLD MACH120

PIN

2 /BPPCS
PIN 4 ISVCACKT
PIN 6 /DMAACK
PIN 9 /IRESET

PIN 10 /WW1

PIN 12 /BUSEN
PIN 13 DREQOUT
PIN 14 /BPPRW
PIN 15 /IOREQ
PIN 16 AEN

PIN 17 /IOW

PIN 20 SAl

PIN 49 SA2

PIN 50 SA3

PIN 51 SA4

PIN 60 SVCREQT
PIN 62 SVCREQR
PIN 64 SVCREQM
PIN 65 SVCREQP
PIN 66 /BPPDTACK
PIN 63 RPXDREQ
PIN 54 /IOR

PIN 36 INT2

PIN 56 /LOW

PIN 67 /IOCS16
PIN 29 /BPPDS
PIN 25 /DGRANT
PIN 26 /ISVCACKM
PIN 33 ISVCACKP
PIN 31 ISVCACKR
PIN 58 /ICHRDY
PIN 57 /CHRDYOE

EQUATIONS

Declaration Segment ------------

PIN Declarations ---------------

COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT

Boolean Equation Segment ------

/WW1 = /AEN * IOREQ * IOW * /SA4 * [SA3 * SA2 * [SAl
BUSEN =/AEN * IOREQ * IOW + /AEN * IOREQ * IOR

IOCS16.TRST =/AEN * IOREQ

I0CS16 = LOW

Application Note

In CD1283/'1284 Evaluation Kit

RESET = /AEN * IOREQ * IOW * /[SA4 * [SA3 * SA2 * SA1

BPPCS =/AEN * IOREQ * /SA4 * SA3 * [SA2 * [SA1 * IOW * /BPPDTACK +
/AEN * IOREQ * /SA4 * SA3 * [SA2 * [SAL1 * IOR * [BPPDTACK

BPPRW = IOW

BPPDS =/AEN * IOREQ * /SA4 * SA3 * |SA2 * [SA1 * IOR +
/AEN * IOREQ * /SA4 * SA3 * [SA2 * [SA1 * IOW +
SVCACKR + SVCACKP + SVCACKT + SVCACKM

INT2 = /SVCREQR + /SVCREQT + /SVCREQP + /SVCREQM
DGRANT = SVCACKR + SVCACKT + SVCACKP + SVCACKM
SVCACKR =/AEN * IOREQ * IOR * /SA4 * SA3 * /[SA2 * SA1
SVCACKT =/AEN * IOREQ * IOR * /SA4 * SA3 * SA2 * [SA1
SVCACKP = /AEN * IOREQ * IOR * /SA4 * SA3 * SA2 * SAl
SVCACKM =/AEN * IOREQ * IOR * SA4 * [SA3 * [SA2 * [SA1

DREQOUT = /RPXDREQ

DMAACK =/AEN * IOREQ * IOW * SA4 * [SA3 * [SA2 * SAL +
/AEN * |IOREQ * IOR * SA4 * [SA3 * [SA2 * SA1

CHRDYOE =/AEN * IOREQ * /BPPDTACK * /SA4 * SA3 * [SA2 * /[SAL * IOW +
/AEN * IOREQ * /BPPDTACK * /SA4 * SA3 * /[SA2 * /[SAL * IOR

CHRDY = LOW
CHRDY.TRST = CHRDYOE

, Simulation Segment ------------
SIMULATION

"“TRACE_ON INT2

:SETF SVCREQR SVCREQT SVCREQP /SVCREQM
:SETF /SVCREQR SVCREQT SVCREQP /SVCREQM
:SETF SVCREQR SVCREQT SVCREQP SVCREQM
:SETF SVCREQR SVCREQT SVCREQP SVCREQM
:SETF SVCREQR SVCREQT /SVCREQP SVCREQM
:SETF /SVCREQR /SVCREQT SVCREQP /SVCREQM
:SETF SVCREQR SVCREQT SVCREQP SVCREQM
:SETF SVCREQR SVCREQT SVCREQP SVCREQM
:SETF SVCREQR /SVCREQT SVCREQP SVCREQM
:SETF /SVCREQR /SVCREQT /SVCREQP /SVCREQM
:SETF SVCREQR SVCREQT SVCREQP SVCREQM
:SETF SVCREQR SVCREQT SVCREQP SVCREQM
:SETF /SVCREQR SVCREQT SVCREQP SVCREQM
:SETF SVCREQR SVCREQT SVCREQP SVCREQM
:SETF SVCREQR SVCREQT SVCREQP SVCREQM
‘TRACE_OFF

Application Note 29

CD1283/1284 Evaluation Kit

30

;TRACE_ON BPPCS

;SETF SA4 SA3 SA2 SA1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 SA3 SA2 SA1 /AEN IOREQ /BPPDTACK IOW
;SETF SA4 /SA3 SA2 SA1 /AEN IOREQ /BPPDTACK IOW
;SETF SA4 SA3 /SA2 SA1 /AEN IOREQ /BPPDTACK IOW
;SETF SA4 SA3 SA2 /SA1 /AEN IOREQ /BPPDTACK IOW
;SETF SA4 SA3 /SA2 /SA1 /AEN IOREQ /BPPDTACK IOW
;SETF SA4 /SA3 SA2 /SA1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 SA3 SA2 /SA1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 SA3 /SA2 SA1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 /SA3 SA2 SA1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 /SA3 /SA2 SAL1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 /SA3 SA2 /SAL1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 SA3 /SA2 /SAL1 /AEN IOREQ /BPPDTACK IOW
;SETF SA4 /SA3 /SA2 /SA1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 /SA3 /SA2 ISA1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 SA3 /SA2 /SAL1 /AEN IOREQ /BPPDTACK IOR

;SETF /SA4 SA3 /SA2 /SA1 /AEN IOREQ /BPPDTACK IOW
;SETF /SA4 SA3/SA2 /SA1 AEN IOREQ /BPPDTACK IOW

;SETF /SA4 SA3 /SA2 /SAL1 /AEN /IOREQ /BPPDTACK IOW
;TRACE_OFF

;TRACE_ON IOCS16
;SETF /AEN /IOREQ /LOW
;SETF /AEN /IOREQ LOW
;SETF /AEN IOREQ /LOW
;SETF /AEN IOREQ LOW
;SETF AEN /IOREQ /LOW
;SETF AEN /IOREQ LOW
;SETF AEN IOREQ /LOW
;SETF AEN IOREQ LOW
;TRACE_OFF

;TRACE_ON CHRDY BPPCS BPPDS

;SETF
;SETF
;SETF
;SETF
;SETF
;SETF

/AEN /IOREQ /IOW /BPPDTACK /SA4 SA3 /SA2 /ISA1
/AEN /IOREQ /IOW /BPPDTACK /SA4 SA3 /SA2 /ISA1
/AEN IOREQ IOW /BPPDTACK /SA4 SA3 /SA2 /SA1
/AEN IOREQ IOR /BPPDTACK /SA4 SA3/SA2 /SA1
/AEN IOREQ IOR /BPPDTACK /SA4 SA3 /SA2 ISA1
/AEN IOREQ IOW BPPDTACK /SA4 SA3 /SA2 /SA1

;TRACE_OFF

Application Note

OUTEN vz
080
081
o2
DB3 £l
o84 =—1fo
085
085
087
o8a
089
0810
o811
| 0b12 st o
o813 S
D o814 33510
—TOuwovm< DB15 MAXS62 R2A
0 vee
49 exs o
2 a1 Ex B DIR
N E “ P e en a1k
3] a3
H E A .
7 A5 Txp3 [X0,
s
WEADER 4X2 - rxps AL BXD3I
RIW or
A SRE b2 otEar
bs iy 4
< aTs3 P2k s o
crss
PE—T
a, I bsRE :
Aj—‘—‘ DTACK o3 24 o3
1 R
DWAACK s
IDMMACK DMAREQ Txpz & X0,
5 9 SvcREGR rxpz [H2 02 f
SVCACKR ore
= v e svceor—oig SueAesl 325&‘
ves
YR 1018 SVCAGKT aTss P2
o 010 isvenzou sod <o e — [
IR0Lz 1Rg1z Sveac—erd SRR (o R —
lngs 1RQ15 v 6,
By 1RQ14 e —0d svemege 60 oo 10
: DACKD . SVCACKP 6P |25 3 WAREET
DREQO
(22
DACKS . k
orEos o oogant 70 | ssmane E
DACKE R3 CNL
s TR E Ristp 1ok 47K (pesy N
TR
Rk o 23k cow Ho vee) : RS-ty
XFLAG=Select
DREQY — _zouwoom< o 3 JiLaceses
sy . H o
“MASTER I TEEN RESEL 19| REser e PP 1114 L 5 V=nFait
5 =D R— 5 i 1= i ADR=Perrr
CON AT368 N0 e e H
viEswae 5 R0 —
avTESWAP osct T R
Gr-coized R—oe——= o
s N T—
s o D — 12
CONT3. NN ;‘
wry 36 cont; (IR :
T2 is
B2 z CoNTe—(aze
2o = Soury Az i
e = T 5 o5 il i
oz ror 3 i3 i
Conts ry 15 21
521030 N 5 12 22
23
vge B 1031 24
b4 Braeo3 Reset Switch %
—om locuck H—a 53 1034 27
neset Dy s |
3 resonv o7 A =103 esa v I isa s 2
1208 5 Si
17Qs i a3 30
R Y B Shs 31
&3] oreoz 32
3 O 33
32 ows el 31
] ey o 35
i b 4 o 7 TEY =3
Braz | -SMEMW Bse|li03e SeoouLox 285240 3385883388 CON36
Low 53 “Swemr e {iioar vecol com 5333353
o ow wgpy o 1038 sw spoT
1R 2 Criroy d e
2451 packs 75 U040 _DGRANT A3 1.2K SN7451053N
B4 oreQs SVeREQT SVCAGKH -
e8] Thcka 3
B35 DREQL 62 | 28 E 3
2 Rersn &2 svereoR T) E
o 52 svscix RPXDREQ peDs
ks a7 si | SRt oz 20a
o 1RQ8 SVCREGP SVGACKR [
e 1ROS ts o ePDTACK 1022 B2a
ot a1 TomE o7 | Y oA 2 Quickium
e S Connectors
vee | B2 % mach120
g e are Ao.5] ur
‘v
= 1a.3umz - . 2o v 2
x| T
+—52] oo & D15 CLKL n
o0 oqolt-s > 013 p14 [—X
<& cowamem 88 r— n
02 Q2 A—H oo b1 B
2 03 o3 37 21257 oe :
os Qs HZ 1] 0s D6 [L
oo TRy
u 1T]os g5 e ol 120, o[
o1 &7 oo oo [
4 —iqoc HP Conner 2012 HP Connct 20x2
3
J— ~ FarssTs B —
T
e
. ios__ sw T —
o 2 ioreg swe
vee cikio H—a .
PAL22VI0 5]
pr—
uns 1
Pra— 100 | WEADER 30x2
Aooe o1
A3 B3 L |
Aa Ba Lo
As 85 T 20
OT—
a8 BE
Ao TTI— HP Connet 2012 HP Connet 20x2
‘ a8 Bs Xor
19,
19
o
Farszas
47 wr,
053ur ‘
ITTER—
08 x0
o s 5 Ao o8
N X
oii A B it
cas NI X
0.33uF 013 AS 85 XD13
Do A Xo1e
PASSIVE, DEV. 1] Nas N 018 HP Connet 20x2
WEADER 11x2
194
1 or
Tarszas
vee WEADER 30x2 WEADER 30x2
T
L Lt L L L LD L L L L -+t L 1 1 "L "1
Sut Saur ca s co cr cs cs c10 c11 c12 c13 cia c15 cis c17 c1s
T TS TS T S T S TSN T S T ST G TS T ST S T G T ST S T
c1s c20 c21 c22 c23 c: c25 c26 ca7 c28 c29 c30 c31 c3z c33 c3. c35 c36 c37 c3s c3g " CD1284 - Eval Board
= = ES = = = = = = = = = ES = = = = ES = = = - Evaluation Boar
g v e D) I 2 I) D I A W) A R N N) N) D N N v A I A AN I v N A I vt N I
Toeument Wumber
CDK1284-E-ATO2A
ate: 1997 Eheer 1 of

	1.0 Evaluation Kit Contents
	1.1 Hardware
	1.2 Software
	1.2.1 References

	2.0 Introduction
	3.0 Supplemental Information
	3.1 Interrupts
	3.2 CD1283/’1284 DMAACK Select
	3.3 Ordering Information

	4.0 Hardware Installation
	4.1 System Requirements
	4.2 Evaluation Board
	4.2.1 Switches and Jumpers
	Table 1. Switch Setup
	Table 2. Jumpers
	Table 3. Eligible Switch and Jumper Settings

	5.0 Software Installation
	5.1 Running the Demonstration Software

	6.0 CD1283/’1284 Parallel Channel Programming Guide
	6.1 Functional Blocks
	6.2 Using the Parallel Channel
	6.2.1 Channel Initialization
	6.2.1.1 Parallel Port

	6.2.2 Data Pipeline

	6.3 Channel Operation
	6.3.1 Receiving Data — Compatibility Mode
	6.3.2 Receiving Data and ECP Mode
	6.3.3 Changing Directions
	6.3.4 Transmit Data — Reverse Nibble Mode
	6.3.5 Transmit Data — Reverse Byte Mode
	6.3.6 Transmit Data — ECP Mode

	6.4 EPP Mode

	7.0 Programming Examples
	7.1 Initialization Code
	7.2 Service Requests
	7.2.1 Parallel Port
	7.2.2 Pipeline
	7.2.3 Miscellaneous Pipeline Routines

	7.3 Flowcharts
	Figure 1. Polling Method
	Figure 2. Interrupt-Driven Method

	8.0 PAL Equations and Schematic

