Designing Effective Projects: Teaching Thinking Assessing Thinking in a K-5 Classroom ## **Assessing Thinking: Years 3-5** In <u>The Great Bean Race</u> Unit Plan, young botanists investigate plant growth as they compete in a lima bean stalk growing competition with students from other geographic locations. #### **Assessing Process** As students conduct a series of experiments about plans, they write in their journals drawing conclusions about what they observe. The teacher uses the following checklist to assess their scientific thinking. | [] | 1. Observations are recorded in clear, scientific language. | |----|---| | [] | 2. The hypothesis is stated in a good sentence that includes a conclusion about what was observed and the reason it occurred. | | [] | 3. Hypothesis is testable. | | [] | 4. The hypothesis is supported logically by the observations. | ## **Assessing Product** The following rubric describes levels of thinking about the science that students are learning. ### **Science Content Rubric** | Content | 4 | 3 | 2 | 1 | |---|---|--|--|--| | Journal responses, participation in activities, and discussion show the student's ability to: Understand the features and | The student shows a full understanding of the features and processes of plant growth. | The student shows
understanding of the
features and
processes of plant
growth. | The student shows
some understanding
of the features and
processes of plant
growth. | The student shows minimal understanding of the features and processes of plant growth. | | processes of plant growth Theorize, plan, and carry out experiments, and analyze and report conclusions of those experiments | The student can fully theorize, plan, and carry out experiments, and analyze and report conclusions of those experiments. The student explains | The student is developing the ability to theorize, plan, and carry out experiments, and analyze and report conclusions of those experiments. | The student is lacking in the ability to theorize, plan, and carry out experiments, and analyze and report conclusions of those experiments. | The student is unable to plan and carry out experiments independently. The student has difficulty reporting conclusions. | | Explain how asking
and answering
questions are part of
the process of a
scientific investigation | fully how asking and answering questions promote scientific understanding. The student compares prior | The student explains one way of asking and answering questions to promote scientific understanding. | The student has
difficulty explaining
one way of asking
and answering
questions to promote
scientific
understanding. | The student is
unable to explain
how to answer
questions to promote
scientific
understanding. | | Compare prior
knowledge to the
results of a scientific
investigation Organize evidence of | knowledge to the results of a scientific investigation with clear distinctions between the two. The student carefully | The student compares prior knowledge to the results of a scientific investigation with some distinction | The student
compares some prior
knowledge to the
results of a scientific
investigation with
little distinction | The student measures and records change over time with many errors, which makes the information | | change over time | and accurately measures and | between the two. | between the two. | difficult to understand. | |---|---|--|---|--| | Develop models (illustrations and charts) to explain how objects, events, and/or processes work | records change over
time. The student
develops exceptional
models (illustrations
and charts) to
explain how objects,
events, and/or
processes work | The student carefully measures and records change over time. The student develops models (illustrations and charts) that explain how objects, events, and/or processes work. | The student measures and records change over time with some errors. The student develops models (illustrations and charts) with assistance that explain how objects, events, and/or processes work. | The student does not
develop models or
does not explain how
objects, events,
and/or processes
work. | #### **Self-Assessment** At the end of the unit, the students will write a reflection in which they answer the following questions: - 1. During this unit, when did you think most like a scientist? - 2. What evidence shows that you were thinking like a scientist then? - What evidence shows that you were trimking like a scientist thWhat was the easiest kind of thinking for you during this unit?What was the hardest kind of thinking? - 5. What are you going to work harder on during the next science unit?