
Page 1

Implications for
Programming Models

CS 418
 Lecture 9b

CS 418 S’04– 2 –

Implications for Programming Models

Shared address space and explicit message passing
• SAS may provide coherent replication or may not
• Focus primarily on former case

Assume distributed memory in all cases
Recall any model can be supported on any architecture

• Assume both are supported efficiently
• Assume communication in SAS is only through loads and stores
• Assume communication in SAS is at cache block granularity

CS 418 S’04– 3 –

Issues to Consider
Functional issues

• Naming
• Replication and coherence
• Synchronization

Organizational issues
• Granularity at which communication is performed

Performance issues
• Endpoint overhead of communication

– (latency and bandwidth depend on network so considered similar)
• Ease of performance modeling

Cost Issues
• Hardware cost and design complexity

CS 418 S’04– 4 –

Naming

SAS: similar to uniprocessor; system does it all
MP: each process can only directly name the data
in its address space
• Need to specify from where to obtain or where to transfer non-local data
• Easy for regular applications (e.g. Ocean)
• Difficult for applications with irregular, time-varying data needs

– Barnes-Hut: where the parts of the tree that I need? (change with time)
– Raytrace: where are the parts of the scene that I need (unpredictable)

• Solution methods exist
– Barnes-Hut: Extra phase determines needs and transfers data before

computation phase
– Raytrace: scene-oriented rather than ray-oriented approach
– both: emulate application-specific shared address space using hashing

Page 2

CS 418 S’04– 5 –

Replication
Who manages it (i.e. who makes local copies of data)?

• SAS: system, MP: program

Where in local memory hierarchy is replication first done?
• SAS: cache (or memory too), MP: main memory

At what granularity is data allocated in replication store?
• SAS: cache block, MP: program-determined

How are replicated data kept coherent?
• SAS: system, MP: program

How is replacement of replicated data managed?
• SAS: dynamically at fine spatial and temporal grain (every access)
• MP: at phase boundaries, or emulate cache in main memory in software

Of course, SAS affords many more options too (discussed
later)

CS 418 S’04– 6 –

Amount of Replication Needed
Mostly local data accessed => little replication
Cache-coherent SAS:

• Cache holds active working set
– replaces at fine temporal and spatial grain (so little fragmentation too)

• Small enough working sets => need little or no replication in memory
Message Passing or SAS without hardware caching:

• Replicate all data needed in a phase in main memory
– replication overhead can be very large (Barnes-Hut, Raytrace)
– limits scalability of problem size with no. of processors

• Emulate cache in software to achieve fine-temporal-grain replacement
– expensive to manage in software (hardware is better at this)
– may have to be conservative in size of cache used
– fine-grained message generated by misses expensive (in message

passing)
– programming cost for cache and coalescing messages

CS 418 S’04– 7 –

Communication Overhead and Granularity

Overhead directly related to hardware support provided
• Lower in SAS (order of magnitude or more)

Major tasks:
• Address translation and protection

– SAS uses MMU
– MP requires software protection, usually involving OS in some way

• Buffer management
– fixed-size small messages in SAS easy to do in hardware
– flexible-sized message in MP usually need software involvement

• Type checking and matching
– MP does it in software: lots of possible message types due to flexibility

• A lot of research in reducing these costs in MP, but still much larger
Naming, replication and overhead favor SAS

• Many irregular MP applications now emulate SAS/cache in software

CS 418 S’04– 8 –

Block Data Transfer

Fine-grained communication not most efficient for long
messages
• Latency and overhead as well as traffic (headers for each cache line)

SAS: can use block data transfer
• Explicit in system we assume, but can be automated at page or

object level in general (more later)
• Especially important to amortize overhead when it is high

– latency can be hidden by other techniques too
Message passing:

• Overheads are larger, so block transfer more important
• But very natural to use since message are explicit and flexible

– Inherent in model

Page 3

CS 418 S’04– 9 –

Synchronization

SAS: Separate from communication (data transfer)
• Programmer must orchestrate separately

Message passing
• Mutual exclusion by fiat
• Event synchronization already in send-receive match in synchronous

– need separate orchestration (using probes or flags) in asynchronous

CS 418 S’04– 10 –

Hardware Cost and Design Complexity

Higher in SAS, and especially cache-coherent SAS
But both are more complex issues

• Cost
– must be compared with cost of replication in memory
– depends on market factors, sales volume and other non-technical

issues
• Complexity

– must be compared with complexity of writing high-performance
programs

– reduced by increasing experience

CS 418 S’04– 11 –

Performance Model

Three components:
• Modeling cost of primitive system events of different types
• Modeling occurrence of these events in workload
• Integrating the two in a model to predict performance

Second and third are most challenging
Second is the case where cache-coherent SAS is more
difficult
• replication and communication implicit, so events of interest implicit

– similar to problems introduced by caching in uniprocessors
• MP has good guideline: messages are expensive, send infrequently
• Difficult for irregular applications in either case (but more so in SAS)

Block transfer, synchronization, cost/complexity, and
performance modeling advantageous for MP

CS 418 S’04– 12 –

Summary for Programming Models

Given tradeoffs, architect must address:
• Hardware support for SAS (transparent naming) worthwhile?
• Hardware support for replication and coherence worthwhile?
• Should explicit communication support also be provided in SAS?

Current trend:
• Tightly-coupled multiprocessors support for cache-coherent SAS

in hw
• Other major platform is clusters of workstations or

multiprocessors
– currently don’t support SAS in hardware, mostly use message

passing

Page 4

CS 418 S’04– 13 –

Summary

Crucial to understand characteristics of parallel programs
• Implications for a host of architectural issues at all levels

Architectural convergence has led to:
• Greater portability of programming models and software

– Many performance issues similar across programming models too
• Clearer articulation of performance issues

– Used to use PRAM model for algorithm design
– Now models that incorporate communication cost (BSP, logP,….)
– Emphasis in modeling shifted to end-points, where cost is greatest
– But need techniques to model application behavior, not just

machines
Performance issues trade off with one another; iterative
refinement

Ready to understand using workloads to evaluate systems
issues

