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13.5 SEVERAL PRACTICAL PROBLEMS

In this section we shall direct our“attention to two examples of practical transmis-
sion line problems. The first is the determination of load impedance from experi-
mental data, and the second is the design of a single-stub matching network.
_ Let us assume that we have made experimental measurements on a 50-$2 air
_line which show that there is a standing wave ratio of 2.5. This has been deter-
-mined by moving a sliding carriage back and forth along the line to determine
maximum and minimum voltage feadings. A scale provided on the track along
~ which the carriage moves indicates that a minimum occurs at a scale reading of
47.0 cm, as shown in Fig. 13.12. The zero point of the scale is arbitrary and does
not correspond to the location of the load. The location of the minimum is
usually specified instead of the maximum because it can be determined more
accurately than that of the maximum,; think of the sharper minima on a rectified
sine wave. The frequency of operation is 400 MHz, so the wavelength is 75 cm. In
order to pinpoint the location of the load, we remove it and replace it with a
short circuit; the position of the minimum is then determined as 26.0 cm.

We know that the short circuit must be located an integral number of half-
wavelengths from the minimum; let us arbitrarily locate it one half-wavelength
away at 26.0 — 37.5 = —11.5 cm on the scale. Since the short circuit has replaced
the load, the load is also located at —11.5 cm. Our data thus show that the
minimum is 47.0 — (-11. 5) — 58.5 cm from the load, or subtracting one-half
wavelength, a minimum is 21.0 cm from the load. The voltage maximum is

thus 21.0 — (37. 5/2) 225 cm from the lead, or 2.25/75 = 0.030 wavelength/;

from the load. T .

Probe and E Slotted
carriage 50-C line

Toad or
short
circut

gp , ) - Short 01rcu1t :

8 ] S .‘_'.:._':.\.<_._ e et o et e i o ot ..,,.uﬁ‘....r_.c.. D

% 25} ‘ ad ‘ - i

_g 2,.._ I ‘ e e ;

= 1

@ L. do e St i D e 4

z 1 / ; 7 ;

= Y < A\ !

&’ 0 L ot ] LV 1 ] ! i

60 50 T 40 30 T 20 10 0 ?
47 26 ~11.5

Distance scale (cm)

FIGURE 13.12
A sketeh of a coaxial slotted line. The distance scale is on the slotted line. With the load in place, s = 2.5,
and the minimum occurs at a scale reading of 47 cm; for a short circuit the minimum is located at a scale
~ reading of 26 cm. The wavelength is 75 cm. ’
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113.3 SOME TRANSMISSION-LINE
EXAMPLES 1

In this section we shall apply inany of the results that we have obtained in the
previous two sections to several typical transmission-line problems. We shall
simplify our work by restricting our attention to the lossless line.

Let us begin by assuming a two-wire 300-€2 line (Zy = 300 £2), such as the
lead-in wire from the antenna to a television or FM receiver. The circuit is shown
in Fig. 13.5. The line is 2 m long and the dielectric constant is such that the velocity
on the line is 2.5 x 10® m/s. We shall terminate the line with a receiver having an
input resistance of 300 Q and represent the antenna by its Thevenin equivalent
Z7, = 300 Q in series with V 1 = 60 V at 100 MHz. This antenna voltage is larger
" by a factor of about 10° than it would be in a practical case, but it also provides
simpler values to work with; in order to think practical thoughts, divide currents
or voltages by 10°, divide powers by 10'°, and leave impedances alone.

Since the load impedance is equal to the characteristic impedance, the line is
matched; the reflection coefficient is zeto, and the standing wave ratio is unity.
For the given velocity and frequency, the wavelength on the line is v/f = 2.5 m,
and the phase constant is 2z/A = 0.8z rad/m; the attenuation constant is zero.
The electrical length of the line is g/ = (0.87)2, or 1.6z rad. This length may also
be expressed as 288°, or 0.8 wavelength.

The input impedance offered to the voltage source is 300 €2, and since the
internal impedance of the source is 300 2, the voltage at the input to the line is
half of 60 V, or 30 V. The source is matched to the line and delivers the max-
imum available power to the line. Since there is no reflection and no attenuation,
the voltage at the load is 30 V, but it is delayed in phase by 1.6x rad. Thus

Vin = 30cos(2m10%) V

300Q
(R;, of receiver)

FIGURE 13.5 :
A transmission line that is matched at each end produces no reflections and thus delivers maximum power

to the load.



116

Whéreas _ ? 5
v, = 30cos(2r10% — 1.6m) V

—— The input current is ~ —

= 0. 1cos(27r1081) A | —

] - =

300
— 1 while the load current is o ‘ ' ‘ —
— | I; = 0.1cos(2m10% — 1.6m) A - —

The average power delivered to the input of the line by the source must all be
delivered to the load by the line,

i
Pm_PL_§><3Ox01—-15 W
Now let us connect a second receiver, also havmg an input resistance of
1 300%, across the line in parallel with the first receiver. The load impedance is _
now 150 €, the reflection coefficient is

1 . C150-300 1 - -
— - “1504300 3 | N
and the standing wave ratio on the lineis’ -
8§ = + :;’ = 2
] 11 _

— | The input impedance is no longer 300 €2, but is now | . ‘ ' _
‘Zrcos Bl +jZysin Bl 300 150 cos 288° + 7300 sin 288°
0 Zocos Bl +jZy sin Bl 300 cos 288° + 7150 sin 288° o

S = 510/-23.8° = 466 — j206 €2 -

— Zip =

which is a capa01t1vé impedance. Physically, this means that this length of line __
stores more energy in its electric field than in its magnetic field. The input current
—_— phasor is thus : : _

60
1 = — 0.0756/15.0° —
Lon =360 7266 —jaog — :07%6415:0 A

——1 and the power supplied to the line by the source is | ' —
Py = % x (0.0756)* x 466 = 1.333 W

Since there are no losses in the line, 1.333 W must also be delivered to the
———T load. Note that this is less than the 1.50 W which we were able to deliver to a —
matched load; moreover, this power must divide equally between two receivers,
and thus each receiver now receives only 0.667 W. Since the input impedance of —
each receiver is 300 2, the voltage across the \rccelver is easily found as




_ 1 IVS,L|2
0.667 = 53¢
— WVerl=20 V

in comparison with the 30 V obtained across the single load.
Before we leave this example, let us ask ourselves several questlons about
___ the voltages on the transmission line. Where is the voltage a maximum and a
minimum, and what are these values? Does the phase of the load voltage still
— differ from the input voltage by 288°? Presumably, if we can answer these ques-
tions for the voltage, we could do the same for the current.
chapter, and our analogy should therefore provide us with the corresponding
— information for the transmission line. In Sec. 12.2, Eq. (21) serves to locate the
voltage maxima at . .

- Zmax — —

1
ﬁ(¢+2mn) m=0,1,2,..)

IT'|e’. Thus, with = 0.87 and ¢ = m, we find

while the minima are A/4 distant from the maxima,

__ where T' =

and we find that the load voltage (at z= O) 15 a voltage minimum. This, of
-course, verifies the general conclusion we reached in the last chapter a voltage
minimum occurs at the load if Z; < Zy, and a voltage maximum occurs if
Zy > Zy, where both impedances are pure resistances.

imum voltage must be 40 V, since the standing wave ratio is 2. The voltage at the
~ input end of the line is ’

Vein = Iyin Zin = (0.0756/15.0°)(510/—23.8%) = 38.5/~8.8°

__The input voltage is almost as large as the maximum voltage anywhere on the
line because the line is about three-quarters wavelength long, a length which
__ would place: the voltage maximum at the input when Z; < Zj.
The final question we posed for ourselves deals with the relative phase of
_. the input and load voltages. Although we have found each of these voltages, we
do not know the phase angle of the load voltage. From Sec. 12.2, Eq. (18), the
— voltage at any point on the line is

V= (e7% + TP)V§ (35)

We may use this expression to determine the voltage at any point on the line in

the line, we let z = -/,

We answered questions of this nature for the uniform plane wave in the last

terms of the voltage at any other point. Since we know the voltage at the inputto ~ ™~

The minimum voltage on the line is thus the load Voltage 20 V; the max- .



Vim= (P +Te M\ (36)

and solve for v,

Vs,in _ 38.5/—8.8°
elBl + Te—68 eflor _?1;e~j1.6

Vi = - =30.072.0° V

We may now let z =0 in (35) to find the load voltage,

Vir =+ D)V =20/72° = 20/-288°

" The amplitude agrees with our previous value. The presence of the reﬂected wave
causes V;, and ¥V to differ in phase by about —279° instead of —288°.

IIIExample 13.2

0

In order to provide a slightly- more complicated’example, let us now place a purely

- capacitive impedance of —j300 2 in parallel with the two 300-Q receivers. We are to find

the input impedance and the power delivered to each receiver.

Solution. The load impedance is now 150 Q in parallel with —j3CO Q, or
. 150(—j300)  —f3000 o .
Zy = = =" — Q
| LETs0-ja00 T2 00
We first calculate the reflection coefficient and the standing wave ratio:
120 — j60 — 300  —180 ~ 60

P = (3= je0 300 = 420 g0 = "7 1534
140447 - -
S=TToaa7 - 2%

Thus, the standing wave ratio is highet and the mismatch is therefore worse. Let us next

calculate the input impedance. The electrical length of the line is still 288°, so that

7 — 300 (120 —j60) cos 288° -+ 300 sin 288° '
" 300 cos 2882 + (120 — j60) sin 288°

This leads to a source current of '

Vo 60

T Zpy+Zim  300+755—4138.5

Therefore, the average power delivered to the input of the line is

Py = %(0.0564)2(755) = 1.200 W. Since the line is lossless, it follows that Py = 1.200
W, and each receiver gets only 0.6 W.

=755—j1385 Q

Isin =0.0564,7.47° A

IIll»Example 13.3

As a final example let us terminate our line with a purely capacitive impedance,
Z; = —j300Q. We seek the reflection coefficient, the standing-wave ratic, and the
power delivered to the load.
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13.4 GRAPHICAL METHODS
.

Transmission line problems often involve manipulations with complex numbers,

making the time and effort required for a solution several times greater than that

needed for a similar sequence of operations on real numbers. One means of .

reducing the labor without seriously affecting the accuracy is by using transm1s-

sion-line charts. Probably the most widely used one is the Smith chart.*
Basically, this diagram shows curves of constant resistance and constant

reactance; these may represent either an input impedance or a load impedance.

The latter, of course, is the input impedance of a zero-length line. An indication o

of location along the line is also provided, usually in terms of the fraction of a

wavelength from a voltage maximum or minimum. Although they are not spe-

cifically shown on the chart, the standing-wave ratio and the magnitude and
angle of the reflection coefficient are very quickly determined. As a matter of
fact, the diagram is constructed within a circle of unit radius, using polar coor-
dinates, with radius variable |I'| and counterclockwise angle variable ¢, where
I = |I'|e/. Figure 13.6 shows this circle. Since |T'| < 1, all our information must
lie on or within the unit circle. Peculiarly enough, the reflection coefficient itself
will not be plotted on the final chart, for these additional contours would make
the chart very difﬁcult to read.

=6,

\ E——

After. severa} lines of elementary algebra we may “write (41) and (42) in forms
which readily display the nature of the curves on I';, I'; axes,

[

r\? 2 F1\? B
() | e

¢

The first equation describes a family of circles, where each circle is asso-
ciated with a specific value of resistance r. For example, if r = 0 the radius of this
zero-resistance circle is seen to be unity, and it is centered at I', = 0, I'; = 0, the
origin. This checks, for a pure reactance termination leads to a reflection coeffi-
cient of unity magnitude. On the other hand, if » = oo, then z;, = 0o and we have
I' = 1+ 0. The circle described by (43) is centered at I', = 1, I'; = 0 and has zero
radius. It is therefore the point I' = 1 + 0, as we decided it should be. As another
example, the circle for r = 1 is centered at I', = 0.5, I'; =0 and has a radius of
0.5. This circle is shown on Fig. 13.7, along with circles for » = 0.5 and r = 2. All
circles are centered on the T, axis and pass through the point I' = 1 + 0.

Equation (44) also represents a family of circles, but each of these circles is

~ defined by a particular value of x, rather than r. If x = o0, then z; = 0, and

I' = 1 + 0 again. The circle described by (44) is centered at I' = 1 + jO and has
zero radius; it is therefore the point T' =1+ 0. If x = +1, then the circle is

-2+ (-2 AN (44
r ) i x - x k.




'FIGURE 13.6 f .
The polar coordinates of the Smith chart are the mag- i

L, nitude and phase angle of the reflection coefficient; the
- Jr cartesian coordinates are the real and imagm.ary Par_ts
of the reflection coefficient. The entire chart lies mt&;/n/

the unit circle [T} = 1. .
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- FIGURE 13.7

iTt=1

radius of any circle is 1/(1 + #).¢

£

centered at I' =1 +j1 and has unit radius. Ohly one-quarter of this circle lies
within the boundary curve || = 1, as shown in Fig. 13.8. A similar quarter-circle

appears below the I', axis for x = —1. The portions of other circles for

x=10.5, —0.5, 2, and —2 are also shown. The “circle” representing x = 0 is
the I', axis; this is also labeled on Fig. 13.8. )

The two families of circles both appear on the Smith chart, as shown in Fig.
13.9. It is now evident that if we are given Z;, we may divide by Z, to obtain z;,
locate the appropriate » and x circles (interpolating as necessary), and determine

T by the intersection of the two circles. Since the chart does not have concentric

circles showing the values of |I'|, it is necessary to measure the radial distance
from the origin to the intersection with dividers or compass and use an auxiliary
scale to find |I'|. The graduated line segment below the chart in Fig. 13.9 serves
this purpose. The angle of I' is ¢, and it is the counter-clockwise angle from the
I, axis. Again, radial lines showing the angle would clutter up the chart badly, so

L

In-

FIGURE 13.8

The portions of the circles of constant x lying within
iI'| =1 are shown on the I',, T'; axes. The radius of a
given circle is 1/|x]. ’

Constant-r circles are shown on the I';, T'; plane. The



+180°

-150°

FIGURE 13.9 ‘
The Smith chart contains the constant-r circles and constant-x circles, an auxiliary radial scale to deter-
mine |I'|, and an angular scale on the circumference for measuring ¢.

. the angle is indicated on the circumference of the circle. A straight line from the

origin through the intersection may be extended to the perimeter of the chart. As
an example, if Z; = 25 4 j50 2 on a 50-Q line, z;, = 0.5 4 j1, and point 4 on Fig,
13.9 shows the intersection of the r = 0.5 and x = 1 circles. The reflection coeffi-
cient is approximately 0.62 at an angle ¢ of 83°. ,

The Smith chart is completed by adding a second scale on the circumference
by which distance along the line may be computed. This scale is in, wavelength
units, but the values placed on it are not obvious. To obtain them, we first divide
the voltage at any point along the line, :

Vi = Vi (e7% + Ie?)
by the current |
_Y

0

I, = 28 (9t it

obtaining the normalized iﬁput impedance _
VY, eI gt
T Zol,  eiPr Tk

Zin



Replacing z by —/ and dividing numerator and denominator by /%, we have the
general equation relating normalized input impedance, reflection coefficient, and
line length,

1+ Te7 14 |I|ef®-28
“n = _Te P T 1= |T|g@ 2

Note that Wwhen / = 0, we are located at the load, and z;; = (1 + I")/({ = ) = z1,
as shown by (38).

Equation (45) shows that the input impedance at any point z = —/ can be

obtained by replacing T, the reflection coefficient of the load, by I'e7?#, That is,
- we decrease the angle of T" by 28/ radians as we move from the load to the line
input. Only the angle of I" is changed; the magnitude remains constant.

Thus; as we proceed from the load z; to the input impedance z;, we move
toward the generator a distance / on the transmision line, but we move through a
clockwise angle of 28/ on the Smith chart. Since the magnitude of I stays con-
stant, the movement toward the source is made along a constant-radius circle.
One lap around the chart is accomplished whenever g/ changes by = rad, or when

. I changes by one-half wavelength. This agrees with our earlier discovery that the
input impedance of a half-wavelength lossless line is equal to the load impedance.

The Smith chart is thus completed by the addition of a scale showing a
change of 0.5\ for one circumnavigation,of the unit circle. For convenience, two
scales are usually given, one showing an increase in distance for clockwise move-
ment and the other an increase for counterclockwise travel. These two scales are
shown in Fig. 13.10. Note that the one marked “wavelengths toward generator”
(wtg) shows increasing values of //A for clockwise travel, as described above. The
zero point of the wtg scale is rather arbitrarily located to the left. This corre-
sponds to input 1mpedances having phase angles of 0° and RL < Zy. We have
also seen that voltage minima are always located here.

HII»Example 134

The use of the transmission line chart is best shown by example. Let us again conszder a

load impedance, Z; = 25 + /50 €, terminating a 50-<2 line. The line length is 60 cm and

‘the operating frequency is such that the wavelength on the line is 2 m. We desire the
~ input impedance.

Solution. ' We have z; = 0.5+ 1, which is marked as 4 on Fig. 13.11, and we read
I = 0.62/82°. By drawing a straight line from the origin through A to the circumf{erence,
we note a reading of 0.135 on the wtg scale. We have //A = 0.6/2 = 0.3, and it is
therefore 0.3A from the load to the input. We therefore find z;, on the |T'| = 0.62 circle
opposite a wtg reading of 0.135 -+ 0.300 = 0.435. This construction is shown in Fig.
13.11, and the point locating the input impedance is marked B. The normalized input
impedance is read as 0.28 — j0.40, and thus Z;, = 14 —j20. A more accurate analytical
calculauon g1ves Z,,, = 13.7 - j20.2.

(43)
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FIGURE 13.10
A photographic reduction of one version of a useful Smith chart {(courtesy of the Emeloid Company,
Hiliside, N.J.}. For accurate work, larger charts are available wherever fine technical books are sold.

Information concerning the location of the voltage maxima and minima is
also readily obtained on the Smith chart. We already know that a maximum or
minimum must occur at the load when Z; is a pure resistance; if Ry, > Z, there is
a maximum at the load, and if R; < Z, there is a minimum. We may extend this
result now by noting that we could cut off the load end of a transmission line at a
point where the input impedance is a pure resistance and replace that section
with a resistance R;,; there would be no changes on the generator portion of the
line. It follows, then, that the location of voltage maxima and minima must be at
those points where Z;, is a pure resistance. Purely resistive input impedances

[N
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FIGURE 13.11

The normalized input impedance produced by a normal-
ized load impedance z; = 0.5+ 1 on a line 0.3 long is
zi, = 0.28 — j0.40.

must occur on the x = 0 line (the I, axis) of the Smith chart. Voltage maxima or
current minima occur when r > 1, or at wtg = 0.25, and voltage minima or
current maxima occur when r < 1, or at wtg = 0. In the example above, then,
the maximum at wtg = 0.250 must occur 0.250 —0.135 = 0.115 wavelengths
toward the generator from the load. This is a distance of 0. 115 x 200, or 23
cm from the load. %

We should also note that since the standmg wave ratio produced by a
resistive load Ry is either R; /Ry or Ry/Ry, whichever is greater than unity,
the value of s may be read directly as the value of r at the intersection of the
I['| circle and the r axis, » > 1. In our example this intersection is marked point C,
and r = 4.2; thus, s =4.2.

Transmission line charts may also be used for normalized admittances,
“although there are several slight differences in such use. We let
yr = Y1 /Yy = g +jb and use the r circles as g circles and the x circles as b circles.
The two differences are: first, the line segment where g > 1 and b =0 corre-
sponds to a voltage minimum; and second, 180° must be added to the angle of
I as read from the perimeter of the chart. We shall use the Smith chart in this
way in the following section.

Special charts are also available for non-normalized lines, particularly 50-£2
charts and 20-mS charts.

v D137 Aload Z1 =80 — ;100 € is located at z = 0 on a lossless 50-€2 line. The operat-
ing frequency is 200 MHz and the wavelength on the line is 2 m. (a) If the line is 0. 8min
length, use the Smith chart to find the input impedance. (b) What is s? (c) What is the
distance from the load to the nearest voltage maximum? (d) What is the distance from
the input to the nearest point at which the remainder of the line could be replaced by a
pure resistance?

Ans. 79 + 799 Q: 4.50; 0.0397 m; 0.760 m
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13.5 SEVERAL PRACTICAL PROBLEMS

In this section we shall direct our attention to two examples of practical transmis-
sion line problems. The first is the determination of load impedance from experi-
mental data, and the second is the design of a single-stub matching network.

Let us assume that we have made experimental measurements on a 50-2 air
line which show that there is a standing wave ratio of 2.5. This has been deter-
mined by moving a sliding carriage back and forth along the line to determine
maximum and minimum voltage readings. A scale provided on the track along
which the carriage moves indicates that a minimum occurs at a scale reading of
47.0 cm, as shown in Fig. 13.12. The zero point of the scale is arbitrary and does
not correspond to the location of the load. The location of the minimum is
usually specified instead of the maximum because it can be determined more
accurately than that of the maximum; think of the sharper minima on a rectified
sine wave. The frequency of operation is 400 MHz, so the wavelength is 75 cm. In
order to pinpoint the location of the load, we remove it and replace it with a
short circuit; the position of the minimum is then determined as 26.0 ¢cm.

We know that the short circuit must be located an integral number of half-
wavelengths from the minimum; let us‘arbitrarily locate it one half-wavelength
away at 26.0 — 37.5 = —11.5 cm on the scale. Since the short circuit has replaced
the load, the load is also located at —11.5 cm. Our data thus show that the
minimum is 47.0 — (—=11.5) = 58.5 cm from the load, or subtracting one-half
wavelength, a minimum is 21.0 cm from the load. The voltage maximum is
thus 21.0 — (37.5/2) = 2. 25 cm from the load, or 2.25/75 = 0.030 wavelength
from the load.

Slotted
50-Q line

Probe and
carriage

Load or
short
circuit

Short circuit -,

et voee e e e e o e mm.._.,...,,..,.,,...‘?..,.w........m..,..}.,.m,..,“,.,.w.,..‘.v .

~ Load s ~

Relative probe voltage

Distance scale (cm)

FIGURE 13.12

A sketch of a coaxial slotted line. The distance scale is on the slotted line. With the load in place, s = 2.5,
and the minimum occurs at a scale reading of 47 cm; for a short circuit the minimum is located at a scale
reading of 26 cm. The wave}ength is 75 cm.
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z;=2.1+/0.8

FIGURE 13.13
If z;; =2.5+0 on a line 0.03 wavelength long, then
zZy, — 2.1 +_]08

With this information, we can now turn to the Smith chart. At a voltage
maximum the input impedance is a pure resistance equal to sRo; on a normalized
basis, z;, = 2.5. We therefore enter the chart at z;, = 2.5 and read 0.250 on the
wtg scale. Subtracting 0.030 wavelength to reach the load, we find that the
intersection of the s = 2.5 (or |I'| = 0.429) circle and the radial line to 0.220
wavelength is at zz = 2.1 +0.8. The construction is sketched on the Smith
chart of Fig. 13.13. Thus Z; = 105 + ;40 Q, a value which assumes its location
at a scale reading of —11.5 cm, or an integral number of half-wavelengths from
that position. Of course, we may select the “location” of our load at will by
placing the short circuit at that point which we wish to consider as the load
location. Since load locations are not well defined, it is important to specify the
point (or plane) at which the load impedance is determined.

As a final example, let us try to match this load to the 50-Q line by placing a
short-circuited stub of-length d; a distance d from the load (see Fig. 13.14). The
stub line has the same characteristic impedance as the main line. The lengths d
‘and d are to be determined. )

The input impedance to the stub is a pure reactance; when combined in
parallel with the input impedance of the length d containing the load, the resul-

| d N

o l

d FIGURE 13.14
A short-circuited stub of length dj,
located a distance 4 from a load Zg is

used to provide a matched load to the
left of the stub.

461
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tant input impedance must be 1 + 0. Since it is much easier to combine admit-
tances in parallel than impedances, let us rephrase our goal in admittance lan-
guage: the input admittance of the length d containing the load must be 1 4+ jb;,
for the addition of the input admittance of the stub jby,, to produce a total
admittance of 1 + jO. Hence the stub admittance is —jb;. We shall therefore use
the Smith chart as an admittance chart instead of an impedance chart.

The impedance of the load is 2.1 +j0.8, and its location is at —11.5 cm. The
admittance of the load is therefore 1/(2.1 4+0.8), and this value may be deter-
mined by adding one-quarter wavelength on the Smith chart, since Z;, for a
quarter-wavelength line is R%/Z 1, Or z;; = 1/z;, or y;, = zr. Entering the chart
(Fig. 13.15) at zy = 2.1 4+ 0.8, we read 0.220 on the wtg scale; we add (or sub-
tract) 0.250 and find the admittance 0.41 — j0.16 corresponding to this impe-
dance. This point is still located on the s = 2.5 circle. Now, at what point or
points on this circle is the real part of the admittance equal to unity? There are
two answers, 1 +70.95 at wtg = 0.16, and 1 —j0.95 at wtg = 0.34, as shown in
Fig. 13.15. Let us select the former value since this leads to the shorter stub.
Hence vy = —j0.95, and the stub location corresponds to wtg = 0.16. Since the
load admittance was found at wtg = 0.470, then we must move
(0.5 —0.47) + 0.16 = 0.19 wavelength to get to the stub location.

Finally, we may use the chart to determine the necessary length of the
short-circuited stub. The input conductance is zero for any length of short-
circuited stub, so we are restricted to the perimeter of the chart. At the short
circuit, y = oo and wtg = 0.250. We find that b;, = —0.95 is achieved at wig =
0.379, as shown in Fig. 13.15. The stub is therefore 0.379 — 0.250 = 0.129 wave-
length, or 9.67 cm long.

v bpis Standing wave measurements on a lossless 75-€2 line show maxima of 18 V and
minima of 5 V. One minimum is located at a scale reading of 30 cm. With the load
replaced by a short circuit, two adjacent minima are found at scale readings of 17 and 37
c¢cm. Find: (a) s; (b) A; (¢) f; (d) T'z; (e) Zp.

FIGURE 13.15

A normalized load z; = 2.1 +/0.8 is
matched by placing a 0.129-wave-
length short-circuited stub 0.19 wave-
length from the load.
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Ans. 3.60; 0.400 m; 750 MHz; 0.704/—33.0; 77.9 +7104.7 Q2

‘/ D13.9. A normalized load, z; = 2 — jl, is located at z =0 on a lossless 50-Q line. Let
the wavelength be 100 cm. (a) A short-circuited stub is to be located at z = —d. What is
the shortest suitable value for d? (b) What is the shortest possible length of the stub?
Find s: (c) on the main line for z < —d; (d) on the main line for —d<z<0; (e) on the
stub.

Ans. 12.5 cm; 12.5 cm; 1.00; 2.62; oc.

13.6 TRANSIENTS ON TRANSMISSION LINES

Throughout this chapter, we have considered the operation of transmission lines
under steady state conditions, in which voltage and current were sinusoidal and
at a single frequency. In this section we move away from the simple time-
harmonic case and consider transmission line responses to voltage step functions
and pulses, grouped under the general heading of transients. Line operation in
transient mode is important to study, as it allows us to understand how lines can
be used to store and release energy (in pulse-forming applications, for example).
Pulse propagation is important in general since digital signals, composed of
sequences of pulses, are widely used.

We will confine our discussion to the propagation of transients in lines that
are lossless and have no dispersion, so that the basic behavior and analysis
‘methods may be learned. We must femember, however, that transient signals
are necessarily composed of numerous frequencies, as Fourier analysis will show.
Consequently, the question of dispersion in the line arises, since, as we have
found, line propagation constants and reflection coefficients at complex loads
will be frequency-dependent. So in general, pulses are likely to broaden with
propagation distance, and pulse shapes may change when reflecting from a
complex load. These issues will not be considered in detail here, but are readily
addressed when the precise frequency dependences of g and I' are known. In
particular, f(w) can be found by evaluating the imaginary part of y, as given in
Eq. (4), which would in general include the frequency dependences of R, C, G,
and L arising from various mechanisms. For example, the skin effect (which
affects both the conductor resistance and the internal inductance) will result in
frequency-dependent R and L. Once B(w) is known, pulse broadening can be
evaluated using the methods presented in Chapter 12.

We begin our basic discussion of transients by considering a lossless trans-
mission line of length, /, terminated by a matched load, Ry = Z, as shown in
Fig. 13.16a. At the front end of the line is a battery of voltage, V), which is
connected to the line by closing a switch. At time ¢t = 0, the switch is closed, and
the line voltage at z = 0 becomes equal to the battery voltage. This voltage,
however, does not appear across the load until adequate time has elapsed for
the propagation delay. Specifically, at ¢ = 0, a voltage wave is initiated in the line
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FIGURE 13.16

(a) Closing the switch at time 7 = 0 initiates voltage and gu}rent waves, V't and I'". The leading edge of
both waves is indicated by the dashed line, which propagates in the lossless line toward the load at velocity
v. In this case, ¥+ = V; the line voltage is '+ everywhere to the left of the leading edge, where current is
I = V*t/Z,. To the right of the leading edge, voltage and current are both zero. Clockwise curfent,
indicated here, is treated as positive, and will occur when V% is positive. '(b) Voltage across the load
resistor as a function of time, showing the one-way transit time delay (//v).

at the battery end, which then propagates toward the load. The leading edge of
the wave, labeled ¥ in the figure, is of value V't = V. It can be thought of as a
propagating step function, since at all points to the left of V'*, the line voltage is
Vo; at all points to the right (not yet reached by the leading edge), the line voltage
is zero. The wave propagates at velocity v, which in general is the group velocity
in the line.> The wave reaches the load at time ¢ = / /v, and then does not reflect,
since the load is matched. The transient phase is thus over, and the load voltage
is equal to the battery voltage. A plot of load voltage as a function of time is
shown in Fig. 13.165, indicating the propagation delay of ¢ = //v.

3Since we have a step function (composed of many frequencies) as opposed to a sinusoid at a single
frequency, the wave will propagate at the group velocity. In a lossless line with no dispersion as considered
in this section, B = wy/LC, where L and C are constant with frequency. In this case we would find that the
group and phase velocities are equal; (i.e, dw/dB = w/p = v = 1/+/LC). We will thus write the velocity as
v, knowing it to be both v, and wv,.
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Associated with the voltage wave, V'™, is a current wave whose leading edge
is of value IT. This wave is a propagating step function as well, whose value at all
points to the left of V' is I'™ = V*/Z,; at all points to the right, current is zero.
A plot of current through the load as a function of time will thus be identical in
form to the voltage plot of Fig. 13.16b, except that the load current at 1 = //v will
be IL=V+/Z():V()/RL. ) .

We next consider a more general case, in which the load of Fig. 13.16q is
again a resistor, but is not matched to the line (R; # Zy). Reflections will occur at
the load, thus complicating the problem. At ¢ = 0, the switch is closed as before
and a voltage ‘wave, V7" = V;, propagates to the right. Upon reaching the load,
however, the wave will now reflect, producing a back-propagating wave, V; .
The relation between V7 and Vi is through the reflection coefficient at the load:

Yr_
Vi

_RL—-2Z,

S 46
R+ 7, (46)

L

As V7 propagates back toward the battery, it leaves behind its leading edge a
total voltage of Vi + V. Voltage Vi exists everywhere ahead of the Vi wave
until it reaches the battery, whereupon the entire line now is charged to voltage
Vi + V. At the battery, the V'] wave reflects to produce a new forward wave,
V. The ratio of V5" and ¥7 is found through the reflection coefficient at the
battery:

vy
Vi

_Ze—Zy 0-2Zy

[, = = =
& Zg-i-Zg 0+ 2y

—1 (47)

where the impedance at the generator end, Z,, is that of the battery, or zero.

V¥ (equal to —¥[") now propagates to the load, where it reflects to produce
‘backward wave V5 =Ty V5. This wave then returns to the battery, where it
reflects with T', = —1, and the process repeats. Note that with each round trip
the wave voltage is reduced in magnitude since |['z| < 1. Because of this the
propagating wave voltages will eventually approach zero, and steady state is
reached.

The voltage across the load resistor can be found at any given time by
summing the voltage waves that have reached the load and have reflected
from it up to that time. After many round trips, the load voltage will be in
general:

Ve=Vi+ V7 +Vi+ Vi +Vi+Vy+...
= V;f(i+rL+rgrL+rgr§+r§r§+r§rg+...)

Performing a simple factoring operation, the above becomes

Ve=Vi{+ FL)(I +T,I+ Tl +.. ) (48)

465



466

ENGINEERING ELECTROMAGNETICS

Allowing time to approach infinity, the second term in parenthesis in (48)
becomes the power series expansion for the expression 1/(1 —I',I'z). Thus, in
steady state we obtain, :

1+T1,
Vp = Vi ———— 49
(1 —T FL) “)
In our present example, V| = ¥ and I, = —1. Substituting these into (49), we

find the expected result in steady state: Vy = Vy.

A more general situation would involve a non zero 1mpedance at the bat-
tery location, as shown in Fig. 13.17. In this case, a resistor of value R, is
positioned in series with the battery. When the switch is closed, the battery
voltage appears across the series combination of R, and the line characteristic
impedance, Zy. The value of the initial voltage wave, V|", is thus found through
simple voltage division, or

+ Ny

= 50
= r i (50)

With this initial value, the sequence of reflections and the development of the
voltage across the load occurs in the same manner as determined by (48), with
the steady state value determined by (49). The value of the reflection coefficient
at the generator end, determined by (47),is I'y, = (R, — Z)/(Rgs + Zy).

A useful way of keeping track of the voltage at any point in the line is
through a voltage reflection diagram. Such a diagram for the line of Fig. 13.17 is
shown in Fig. 13.18a. It is a two-dimensional plot in which position on the line, z,
is shown on the horizontal axis. Time is plotted on the vertical axis, and is
conveniently expressed as it relates to position and velocity through /= z/v. A
vertical line, located at z =/, is drawn which, together with the ordinate, define
the z axis boundaries of the transmission line. With the switch located at the

vy i
/f =0 - + —
~e vt L VD
e
|
R I
¢ Zy [ R
i
Wl S |
z=0 +——: z=1
|

FIGURE 13.17

With a series resistance at the battery location, voltage division occurs when the switch is closed, such that
Vo = Vrg + Vi . Shown is the first reflected wave, which leaves voltage V]" + V| behind its leading edge.
Associated with the wave is current I, which is —¥7/Zy. Counter-clockwise current is treated as nega-
tive, and will occur when V| is positive.
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FIGURE 13.18
(@) Voltage reflection diagram for the line of Fig. 13.17. A reference line, drawn at z = 3//4, is used to
evaluate the voltage at that position as a function of time. (b) The line voltage at z = 3//4 as determined

from the reflection diagram of (&). Note that the voltage approaches the expected VoRr/(Re + Ryp) as time
approaches infinity.

battery position, the initial voltage wave, Vi, starts at the origin, or lower left
corner of the diagram (z = ¢ = 0). The location of the leading edge of V7 as a

function of time is shown as the diagonal line that joins the origin to the point
along the right-hand vertical line that corresponds to time ¢ = //v (the one-way

467



468

ENGINEERING ELECTROMAGNETICS

transit time). From there (the load location) the position of the leading edge of
the reflected wave, V7, is shown as a “reflected” line which joins the ¢ = //v
point on the right boundary to the r = 2//v point on the ordinate. From there (at
the battery location) the wave reflects again, forming V5, shown as a line parallel
to that for 7|". Subsequent reflected waves are shown, and their values are
labeled.

The voltage as a function of time at a given position in the line can now be
determined by adding the voltages in the waves as they intersect a vertical line,
drawn at the desired location. This addition is performed starting at the bottom
of the diagram (¢ = 0) and progressing upward (in time). Whenever a voltage
wave crosses the vertical line, its value is added to the total at that time. For
example, the voltage at a location three-fourths the distance from the battery to
the load is plotted in Fig. 13.185. To obtain this plot, the line z = (3/4)/ is drawn
on the diagram. Whenever a wave crosses this line, the voltage in the wave is
added to the voltage that has accumulated at z = (3/4)! over all earlier times.
This general procedure enables one to easily determine the voltage at any specific
time and location. In doing so, the terms in (48) that have occurred up to the
chosen time are being added, but with information on the time at which each
term appears. ) )

Line current can be found in a similar way through a. current reflection
diagram. It is easiest to construct the current diagram directly from the voltage
diagram by determining a value for current that is associated with each voltage
wave. In dealing with current, it is important to keep track of the sign of the
current as it relates to the voltage waves and their polarities. Referring to Figs.
13.16a and 13.17, we use the convention in which current associated with a
Jorward-z traveling voltage wave of positive polarity is positive. This would result
in current that flows in the clockwise direction, as shown in the Fig. 13.16a.
Current associated with a backward-z traveling voltage wave of positive polarity
(thus flowing counterclockwise) is negative. Such a case is illustrated in Fig.
13.17. In our two-dimensional transmission line drawings, we assign positive
polarity to voltage waves propagating in either direction if the upper conductor
carries a positive charge and the lower conductor a negative charge. In Figs.
13.16a and 13.17, both voltage waves are of positive polarity, so their associated
currents will be net positive for the forward wave, and net negative for the
backward wave. In general, we write

288 ’
I = 51
7 (5
and
_ V-
I = ~70 (52)

Finding the current associated with a backward-propagating voltage wave imme-
diately requires a minus sign, as (52) indicates.
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FIGURE 13.19

(a) Current reflection diagram for the line of Fig. 13.17 as obtained from the voltage diagram of Fig.
13.18a. (b) Current at the z = 3//4 position as determined from the current reflection diagram, showing the
expected steady state value of Vo/(Rr, + Ry).

Fig. 13.19a shows the current reflection diagram that is derived from the
voltage diagram of Fig. 13.18a. Note that the current values are labeled in terms
of the voltage values, with the appropriate sign added as per (51) and (52). Once
the current diagram is constructed, current at a given location and time can be
found in exactly the same manner as voltage is found using the voltage diagram.
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N
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FIGURE 13.20
Voltage (@) and current (b) reflection diagrams for Example 13.5.

Fig. 13.19b shows the current as a function of time at the z = (3/4)/ position,
determined by summing the current wave values as they cross the vertical line
drawn at that location. -

HII»Example 13.5

In the line shown in Fig. 13.17, R, = Zy = 50 Q, R, = 258, and the battery voltage is
Vo =10 V. The switch is closed at time # = 0. Determine the voltage at the load resistor
and the current in the battery as functions of time.

Solution. Voltage and current reflection diagrams are shown in Fig. 13.204 and b. At
the moment the switch is closed, half the battery voltage appears across the 50 ohm
resistor, with the other half comprising the initial voltage wave. Thus ¥} = (1/2)Vy = 5
V. The wave reaches the 25 ohm load, where it reflects with reflection coefficient

25-50 1

Mi=51%""3

So Vi = —(1/3)V} = —5/3 V. This wave returns to the battery, where it encounters
reflection coefficient, I’y = 0. Thus, no further waves appear; steady state is reached.
Once the voltage wave values are known, the current reflection diagram can be
constructed. The values for the two current waves are
| 1

F="lL-=-"—_A
V7 Ze 750 10
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and

_ Vi 5\ /1 1
i =-5=(5) (&) =
Note that no attempt is made here to derive Ij from I;f. They are both obtained
independently from their respective voltages.

The voltage at the load as a function of time is now found by summing the voltages
along the vertical line at the load position. The resulting plot is shown in Fig. 13.21a.
Current in the battery is found by summing the currents along the vertical axis, with the
resulting plot shown as Fig. 13.215. Note that in steady state, we treat the circuit as
lumped, with the battery in series with the 50 and 25 ohm resistors. Therefore, we expect
to see a steady-state current through the battery (and everywhere else) of

Iz(steady state) = 5—0:_—%5 = 71-5
This value is also found from the current reflection diagram for ¢ > 2//v. Similarly, the
steady-state load voltage should be '

V4
i+ =5-5/3
O
3
v - t
(@
IBé
_o1 1
1 I+li=15 %35
75 v 1
1 n7 1
10
21 t
v
()

FIGURE 13.21
Voltage across the load (a), and current in the battery (P), as determined from the reflection diagrams of
Fig. 13.20 (Example 13.5).
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Re  (10)25) 10
R,+R, 50+25 3

Vi(steady state) = V,

which is found also from the voltage reflection diagram for 7 > /2.

Another type of transient problem involves lines that are initially charged.
In these cases, the manner in which the line discharges through a load is of
interest. Consider the situation shown in Fig. 13.22, in which a charged line of
characteristic impedance Z, is discharged through a resistor of value R, when a
switch at the resistor location is closed.® We consider the resistor at the z = 0
location; the other end of the line is open (as would be necessary) and is located
atz =1/, ‘

When the switch is closed, current Iz begins to flow through the resistor,
and the line discharge process begins. This current does not immediately flow
everywhere in the transmission line, but begins at the resistor, and establishes its
presence at more distant parts of the line as time progresses. By analogy, con-
sider a long line of automobiles at a red light. When the light turns green, the cars
at the front move through the intersection first, followed successively by those
further toward the rear. The point which divides cars in motion and those
standing still is in fact a wave which propagates toward the back of the line.
In the transmission line, the flow of charge progresses in a similar way. A voltage
wave, V", is initiated and propagates to the right. To the left of its leading edge,
charge is in motion; to the right of the leading edge, charge is stationary, and
carries its original density. Accompanying the charge in motion to the left of Vi
is a drop in the charge density as the discharge process occurs, and so the line
voltage to the left of ¥} is partially reduced. This voltage will be given by the
sum of the initial voltage, ¥V, and V", which means that Vf“ must in fact be

14
|
/t =0 + |—
VotV i 14
+ | ]1
|
Rg VR : B ZO
|
—_ |
N——— |—>
1
|

FIGURE 13.22

In an initially charged line, closing the switch as shown initiates a voltage wave of opposite polarity to that
of the initial voltage. The wave thus depletes the line voltage and will fully discharge the line in one round
trip if R, = Z,.

® Even though this is a load resistor, we will call it R, since it is located at the front (generator) end of the
line.



TRANSMISSION LINES 473

negative (or of opposite sign to Vo). The line discharge process is analyzed by
keeping track of V;f as it propagates and undergoes multiple reflections at the
two ends. Voltage and current reflection diagrams are used for this purpose in
much the same way as before.

Referring to Fig. 13.22, we see that for positive Fy the current flowing
through the resistor will be counterclockwise, and hence negative. We also
know that continuity requires that the resistor current be equal to the current
associated with the voltage wave, or

VT
Now the resistor voltage will be
+ ) + Vf
Ve=Vo+ Vi =IrR; = IRy = —7Rg
0
We solve for V" to obtain
—VoZy
Vi=——r 53
L™ Zy+ R, (53)

Having found V", we can set up the voltage and current reflection dia-
grams. That for voltage is shown in Fig. 13.23. Note that the initial condition of
‘voltage V, everywhere on the line is accounted for by assigning voltage Vy to the
horizontal axis of the voltage diagram. The diagram is otherwise drawn as
before, but with I'; = 1 (at the open-circuited load end). Variations in how the
line discharges thus depend on the resistor value at the switch end, R,, which
determines the reflection coefficient, I', at that location. The current reflection
. diagram is derived from the voltage diagram in the usual way. There is no initial
current to consider.

i &
2
V;ﬁfg V‘
Al §
v 70
2 I:? e
31
V; $T V‘\\' Y
bl |
v V]"-: V1+
1z
V;f v FIGURE 13.23
Voltage reflection diagram for the charged line of
1) Fig. 13.22, showing the initial condition of ¥y

0 I z everywhere on the line at : = 0.
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N

FIGURE 13.24
Voltage across the resistor as a function of time, as determined from the reflection dlagram of Fig. 13.23,
in which R, = Z; (I', = 0).

A special case of practical importance is that in which the resistor is
matched to the line, or R, = Zy. In this case, Eq. (53) gives V' = —V,/2. The
line fully discharges in one round-trip of ¥, and produces a voltage across the
resistor of value Vg = Vy/2, which persists for time 7 = 2I/v. The resistor vol-
tage as a function of time is shown in Fig. 13.24. The transmission line in this
application is known as a pulse-forming line. Pulses that are generated in this way
are well-formed and of low noise, provided the switch is sufficiently fast.
Commercial units are available that are capable of generating high-voltage pulses
of widths on the order of a few nanoseconds, using thyratron-based switches.

When the resistor is not matched to the line, full discharge still occurs, but
does so over several reflections, leading to a complicated pulse shape.

I Example 13.6

In the charged line of Fig. 13.22, the characteristic impedance is Zy = 100 Q, and
R, = 100/3 . The line is charged to an initial voltage, Vo = 160 V, and the switch is
closed at time ¢ = 0. Determine and plot the voltage and current through the resistor for
time 0 < ¢ < 8//v (four round-trips). '

Solution. With the given values of R, and Z,, Eq. (47) gives I', = —1 /2. Then, with
't =1, and using (53), we find

3
Vi=Vv = ~1 Vo =—-120V
Vi=V; =T,V =460V
Vi =V; =T,Vy =-30V
Vi=V; =T,V; =+15V
Using these values on the voltage reflection diagram, we evaluate the voltage in time at

the resistor location by moving up the left-hand vertical axis, adding voltages as we
progress, and beginning with ¥ + V" at ¢ = 0. Note that when we add voltages along
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the vertical axis, we are encountering the intersection points between incident and
reflected waves, which occur (in time) at each integer multiple of 2//v. So, when moving
up the axis, we add the voltages of both waves to our total at each occurrence. The
voltage within each time interval is thus:

Ve=Vo+ V] =40V < (0 <1< 2)v)
=Vo+Vi+ V[ +VS=-20V Qv <t < 4/v)
=Vo+ Vi + Vi + Vi +Vy+Vi =10V (4ljv < t < 6l/v)

— Vo Vi+ Vi +Vi+Vy+VF+V; +Vi=-5V  (6l/v<t<8l/v)

The resulting voltage plot over the desired time range is shown in Fig. 13.25a.

Vad
40
10
—_— , -
-5 ’ t
] —20 _
2 4 8l 8
v v v v
(@)
IR 8
1.2
0.6k 0.6
0.15
| ' t
0.6 -03
-1.2
-1.2 FIGURE 13.25
2 4 L 8l Resistor voltage (2) and current (b)
v v v v as functions of time for the line of

Fig. 13.22, with values as specified
@ in Example 13.6.
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The current through the resistor is most easily obtained by dividing the voltages in
Fig. 13.25a by —R,. As a demonstration, we can also use the current diagram of Fig.
13.19a to obtain this result. Using (51) and (52), we evaluate the current waves as
follows:

IF =V{)Zy=-12A

I7 =~Vi/Zy=+12A

If =-I; =V{§/Zy=+0.6A
If =—I; =Vi/Zy=-030A
If =—I] =V}{/Zy=+0.15A

If

Using the above values on the current reflection diagram, Fig. 13.19¢, we add up
currents in the resistor in time by moving up the left-hand axis, as we did with the
voltage diagram. The result.is shown in Fig. 13.25b. As a further check to the correct-
ness of our diagram construction, we note that current at the open end of the line
(Z =1) must always be zero. Therefore, summing currents up the right-hand axis
must give a zero result for all time. The reader is encouraged to verify this.
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PROBLEMS

13.1 The parameters of a certain transmission line operating at 6 x 10* rad/s

are L =04uH/m, C =40 pF/m, G = 80 mS/m, and R =20 Q/m. (a)
Find y, a, B, A, and Z,. (b) If a voltage wave travels 20 m down the line,
by what percentage is its amplitude reduced, and by how many degrees is
its phase shifted? '

13.2 A lossless transmission line with Zy = 60 Q is being operated at 60 MHz.

The velocity on the line is 3 x 108 m/s. If the line is short-circuited at
z=0, find Z;, at z = : (a) —1 m; (b) =2 m; {¢) —2.5 m; (d) —1.25 m.
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The characteristic impedance of a certain lossless transmission line is
72Q. If L =0.5uH/m, find: (a) C; (b) vy; (c) B if f =80 MHz. (d)
The line is terminated with a load of 60 €. Find T" and s.

A lossless transmission line having Z, =120 € is operating at
=5 x 108 rad/s. If the velocity on the line is 2.4 x 10® m/s, find: (a)
L; (b) C. (c) Let Z; be represented by an inductance of 0.6 «H in series
with a 100- resistance. Find I and s.

Two characteristics of a certain lossless transmission line are Zy = 50 Q2
and y = 0 +j0.2zm™! at f = 60 MHz: (a) find L and C for the line. (b)
A load Z; = 60 +j80 Q is located at z = 0. What is the shortest distance
from the load to a point at which Z;, = R;, +j0?

The propagation constant of a lossy transmission line is 1 + ;2 m~!, and
its characteristic impedance is 20 + /0 Q at w = 1 Mrad/s. Find L, C, R,
and G for the line. ‘

The dimensions of the outer conductor of a coaxial cable are b and ¢,
¢ > b. Assume ¢ = o, and let 4 = pp. Find the magnetic energy stored
per unit length in the region » < r < ¢ for a uniformly distributed total
current [ flowing in the opposite directions in the inner and outer con-
ductors.

The conductors of a coaxial transmission line are copper (o, = 5.8 x 107
S/m), and the dielectric is polyethylene (¢ = 2.26, o/we’ = 0.0002). If
the inner radius of the outer conductor is 4 mm, find the radius of the
inner conductor so that: (a) Zy=50 ; (b) C =100 pF/m; (c)
L =0.2uH/m. A lossless line can be assumed.

Two aluminum-clad steel conductors are used to construct a two-wire
transmission line. Let oa; = 3.8 x 107 S/m, og =5 x 10° S/m, and
psi = 100 uH/m. The radius of the steel wire is 0.5 in., and the alumi-
num coating is 0.05 in thick. The dielectric is air, and the center-to-center
wire separation is 4 in. Find C, L, G, and R for the line at 10 MHz.
Each conductor of a two-wire transmission line has a radius of 0.5 mm,;
their center-to-center separation is 0.8 cm. Let f = 150 MHz, and
assume o and o, are zero. Find the dielectric constant of the insulating
medium if: (a) Zo = 300 €2; (b) C = 20 pF/m; (c) v, = 2.6 x 10® m/s.
Pertinent dimensions for the transmission line shown in Fig. 13.4 are
b =3 mm and d = 0.2 mm. The conductors and the dielectric are non-
magnetic. (a) If the characteristic impedance of the line is 15 @, find 5.
Assume a low-loss dielectric. (b) Assume copper conductors and opera-
tion at 2 x 10® rad/s. If RC = GL, determine the loss tangent of the
dielectric.

A transmission line constructed from perfect conductors and an air
dielectric is to have a maximum dimension of 8 mm for its cross section.
The line is to be used at high frequencies. Specify the dimensions 1f it is:
(a) a two-wire line with Zy = 300 ; (b) a planar line with Zy = 15 €2; (c)
a 72-Q coax having a zero-thickness outer conductor.
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13.13

13.14

13.15

13.16

13.17
13.18
13.19

120/0°V

The incident voltage wave on a certain lossless transmission line for
which Zy =50 Q and v, =2 x 10® m/s is V*(z, 7) = 200 cos(wt — z)
V. (a) Find w. (b) Find I*(z, t). The section of line for which z > 0 is
replaced by a load Z; = 50 +130 Q at z= 0. Find: (c) I'z; (d) V, (2); (e)
Vyat z=-22 m.

Coaxial lines 1 and 2 have the following parameters: p@; = uy = o,
o1 =03 =0, €py =2.25, €py =4, a1 = a2 = 0.8 mm, by = 6 mm, by =3
mm, ZL2 = Z()g, and ZL1 1S Z,'nz. (a) Find Zm and Z()g. (b) Find s on line
1. (¢) If a 20-cm length of line 1 is inserted immediately in front of Z,
and /' = 300 MHz, find s on line 2.

For the transmission line represented in Fig. 13.26, find ¥V, if f = :(a)
60 Hz; (b) 500 kHz.

A 300-Q transmission line is 0.8 m long and terminated with a short
circuit. The line is operating in air with a wavelength of 0.8 m and is
lossless. (a) If the input voltage amplitude is 10 V, what is the maximum
voltage amplitude at any point on the line? (b) What is the current
amplitude in the short circuit?

Determine the average power absorbed by each resistor in Fig. 13.27.
The line shown in Fig. 13.28 is lossless. Find s on-both sections 1 and 2.
A lossless transmission line is 50 cm in length and operating at a fre-
quency of 100 MHz. The line parameters are L = 0.2 uH/m and C = 80
pF/m. The line is terminated in a short circuit at z = 0, and there is a
load Z; = 50 + ;20 Q across the line at location z = —20 cm. What
average power is delivered to Z; if the input voltage is 100/0° V?

12Q ‘ ‘
/\/\/\/ \ Lossless, v=2¢/3 /\
ZO = 50 Q
80 m

FIGURE 13.26
See Problem 15.

0.5/0°A

Lossless, v=2¢/3

jj_ Zy=50Q j—j

1008 - = 25Q
26 A

FIGURE 13.27
See Problem 17.
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023

’f !/\
! - 50Q
o 100 Q ©)
Zy=50Q Zy =509
° ‘ : X
—j 100 Q
FIGURE 13.28
See Problem 18.
200 3/ C 40 Q
/\N\/ /\ Air, lossless /\N\,\
100/0°V Zy=500Q 730Q
2.7A

FIGURE 13.29
See Problem 20.

13.20 (a) Determine s on the transmission line of Fig. 13.29. Note that the
dielectric is air. (b) Find the input impedance. (c) If 1 /@C = 10 &, find ;.
(d) What value of C will produce a maximum value for |I;| at w =]
Grad/s? For this value of C, calculate the average power: (e) supplied by
the source; (f) delivered to Z; = 40 + ;30 Q.

- 13.21 A lossless line having an air dielectric has a characteristic impedance of
400 €. The line is operating at 200 MHz and Z; = 200 — ;200 €. Use
analytic methods or the Smith chart (or both) to find: (a) s, (b) ZL, if the
line is 1 m long; (c) the distance from the load to the nearest voltage
maximum. :

13.22 A lossless two-wire line has a characteristic impedance of 300 € and a
capacitance of 15 pF/m. The load at z = 0 consists of a 600-£2 resistor in
paraliel with a 10-pF capacitor. If o = 10® rad/s and the line is 20 m
long, use the Smith chart to find: (a) [T.[; (b} 5; (¢) Zin-

13.23 The normalized load on a lossless transmission line is 2 + j1. Let / = 20
m and make use of the Smith chart to find: (a) the shortest distance from
the load to a point at which z;, = ri, +j0, where r; > 0; (b) zin at this
point. (c) The line is cut at this point and the portion containing z, is
thrown away. A resistor r = r;, of part (a) is connected across the line.
What is s on the remainder of the line? (d) What is the shortest distance
from this resistor to a point at which z;, = 2+ j1?

13.24 With the aid of the Smith chart, plot a curve of |Z;| vs. [ for the
transmission line shown in Fig. 13.30. Cover the range 0 < [/A < 0.25.
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lee_/\/\/\,\ Lossloss VR

20

20 Q

N |

20Q

FIGURE 13.30
See Problem 24,

13.25

13.26

13.27

13.28

13.29

13.30

13.31

A 300-L transmission line is short-circuited at z = 0. A voltage maxi-
mum, |V, = 10V, is found at z = —25 cm, and the minimum voltage,
[V ]pmin = 0 is at z = =50 ¢m. Use the Smith chart to find Z; (with the
short circuit replaced by the load) if the voltage readings are: (a)
| V]pax =12 Vat z=—-5 cm, and |V|,;, =5 V; (b) |V]per =17 V at
z=-=20cm, and |V|,;, = 0.

A lossless 50-Q transmission line operates with a velocity that is 3/4 ¢. A
load Z; = 60 + ;30 Q2 is located at z = 0. Use the Smith chart to find: (a)
s; (b) the distance from the load to the nearest voltage minimum if
f = 300 MHz; (¢) the input 1mpedance if f =200 MHz and the input
is at z = —110 cm.

The characteristic admittance (¥y = 1 /Zy) of a lossless transmission line
1s 20 mS. The line is terminated in a load Yy = 40 — j20 mS. Make use of
the Smith chart to find: (a) s; (b) Y, if /=0.154; (¢) the dlstance n
wavelengths from Y to the nearest voltage maximum:.

The wavelength on a certain lossless line is 10 ci. If the normalized input
impedance is z; = 1 +j2, use the Smith chart to determine: (a) s; (b) z;,
if the length of the line is 12 cm; (¢) x;, if z; = 2 + jx; where x; > 0.
A standing wave ratio of 2.5 exists on a lossless 60-92 line. Probe mea-
surements locate a voltage minimum on the line whose location is
marked by a small scratch on the line. When the load is replaced by a
short circuit, the minima are 25 cm apart, and one minimum is located at
a point 7 cm toward the source from the scratch. Find Z;.

A 2-wire line constructed of lossless wire of circular cross section is
gradually flared into a coupling loop that looks like an egg beater. At
the point X, indicated by the arrow in Fig. 13.31, a short circuit is placed
across the line. A probe is moved along the line and indicates that the
first voltage minimum to the left of X is 16 cm from X. With the short
circuit removed, a voltage minimum is found 5 cm to the left of X, and a
voltage maximum is located that is 3 times the voltage of the minimum.
Use the Smith chart to determine: (a) f; (b) s; (¢) the normalized input
impedance of the egg beater as seen looking to the rlght at pomt X.

In order to compare the relative sharpness of the maxima and minima of
a standing wave, assume a load z; =4 40 is located at z = 0. Let
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FIGURE 13.31
See Problem 30.

\¥],a = | and A = 1 m. Determine the width of the: (a) minimum where
V| < 1.1; (b) maximum where |V] > 4/1.1.

A lossless line is operating with Zy = 40 2, f =20 MHz, and g =7.57
rad/m. With a short circuit replacing the load, a minimum is found at a
point on the line marked by a small spot of puce paint. With the load
installed, it is found that s = 1.5 and a voltage minimum is located 1 m
toward the source from the puce dot. (a) Find Z;. (b) What load would
produce s = 1.5 with |V/|,,,, at the paint spot?

In Fig. 13.14, let Z; =40 —j10 ©, Zy = 50 @, / = 800 MHz, and v = c.
(a) Find the shortest length d; of a short-circuited stub, and the shortest
distance d that it may be located from the load to provide a perfect
match on the main line to the left of the stub. (b) Repeat for an open-
circuited stub.

The lossless line shown in Fig. 13.32 is operating with A = 100 cm. If
dy = 10 cm, d = 25 cm, and the line is matched to the left of the stub,
what is Z;? C

A load, Z; =25+ /75 Q,’is located at z =0 on a lossless two-wire line
for which Zy = 50 € and v = ¢. (a) If f = 300 MHz, find the shortest
distance d (z = —d) at which the input admittance has a real part equal
to 1/Z; and a negative imaginary part. (b) What value of capacitance C
should be connected across the line at that point to provide unity stand-
ing wave ratio on the remaining portion of the line?

The two-wire lines shown in Fig. 13.33 are all lossless and have Zy = 200
Q. Find d and the shortest possible value for d; to provide a matched
load if A = 100 cm.

FIGURE 13.32
See Problem 34.
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8.C

Matched — 100 Q2

FIGURE 13.33
See Problem 36.

13.37

13.38

13.39

- 13.40

13.41

13.42

In the transmission line of Fig. 13.17, Ry = Zy = 50 ©, and R, =25 Q.
Determine and plot the voltage at the load resistor and the current in the
battery as functions of time by constructing appropriate voltage and
current reflection diagrams.

Repeat Problem 37, with Zy = 50 ©, and R;, = R, = 25 Q. Carry out the
analysis for the time period 0 < ¢ < 8//v.

In the transmission line of Fig. 13.17, Zy = 50 @, and R, = R, =25 Q.
The switch is closed at 1 = 0 and is opened again at time t = [/4v, thus
creating a rectangular voltage pulse in the line. Construct an appropriate
voltage reflection diagram for this case and use it to make a plot of the
voltage at the load resistor as a function of time for 0 < ¢t < 8//v (note
that the effect of opening the switch is to initiate a second voltage wave,
whose value is such that it leaves a net current of zero in its wake).

In the charged line of Fig. 13.22, the characteristic impedance is
Zy =100 2, and R, =300 2. The line is charged to initial voltage,
Vo =160 V, and the switch is closed at 1 = 0. Determine and plot the
voltage and current through the resistor for time 0 <7 < 8//v (four
round-trips). This problem accompanies Example 13.6 as the other spe-
cial case of the basic charged line problem, in which now R, > Z.

In the transmission line of Fig. 13.34, the switch is located midway down
the line, and is closed at # = 0. Construct a voltage reflection diagram for
this case, where R; = Z,. Plot the load resistor voltage as a function of
time.

A simple frozen wave generator is shown in Fig. 13.35. Both switches are
closed simultaneously at t = 0. Construct an appropriate voltage reflec-
tion diagram for the case in which R; = Zj. Determine and plot the load
resistor voltage as a function of time.
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N0
V=", =
l 0 oo
Yy _l, Zg Ry
zer V=0 z=1
FIGURE 13.34
See Problem 41.
N =0 N 0
V=—V V=", V=0
® 0 O/G 0 O/O— a
Zy Ry,
N E !
; 2 ! ! ‘

FIGURE 13.35
See Problem 42.
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