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Technology 
Scaling
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Lithography Scaling Limitations
From Broers

 
[1] IEDM Plenary Session 1980

1c 

1980:   
Optical Lithography Limit 

~ 400nm
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Transistor Scaling Limitations
From Meindl

 
[2] IEDM Plenary Session 1983

1d 

1983:   
Transistor architecture limit

200-400nm (SCE)
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Transistor Scaling Limitations
From Heilmeier

 
[4] IEDM Plenary Session 1984

1984:   
Transistor architecture limit
300-500nm (laundry list of reasons…)

1e 
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How small is a 32nm memory cell?

K. Kuhn 2007

Blood cell:  Elec. Mic. Fac. (NCI-Frederick) 2007

32nm SRAM Cell: 0.171 um2

Small enough that a 2008 32nm SRAM cell is 
dwarfed by a human redblood

 
cell

~300nm

~500nm

1983-84 limits on gate size, are 
commensurate with the dimensions 

of 2008’s entire 32nm SRAM cell!

2 
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1980 SRAM Cell:  1700 um2 32nm SRAM Cell: 0.171 um2

M. Bohr 2007

Small enough that a 2008 32nm SRAM cell is 
dwarfed by a 1980 SRAM cell CONTACT

How small is a 32nm memory cell?

10000X

3 
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Small enough that a 2008 32nm SRAM cell is 
dwarfed by a 1980 SRAM cell CONTACT

Contact 
1978

32nm SRAM 
Cell 2008

1 m

How small is a 32nm memory cell?

M. Bohr, ISCC, 2009 4 
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Atomic dimensions are now routine

5 
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Part I:  
Physical Variation 

Sources
 and Mitigation

6 
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Part I –
 

Physical Variation Sources
 and Mitigation

Polish

Patterning

Strain

7 
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Part I –
 

Physical Variation Sources
 and Mitigation
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Patterning
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How small is a 45nm transistor?

•

 

5.5X smaller than the 193nm light that prints it
•

 

~15X smaller than visible green light

K. Kuhn 2007 9 
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Etch

Design

OPC/RET Trim mask 
Reticle 

manufacturing

Phase mask 

Exposure

(magnified 25,000X)

Trim mask data

Phase mask data

Putting it all together 
for the gate layer of a 

65nm MPU

10 
C. Kenyon
TOK conf.
Dec. 2008

http://circuit.intel.com/Circuit/Index/News/Lead+Story/centrino12LG_PT.htm
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Optical Proximity Correction (OPC)
 As a Resolution Enhancement Technique

Contour prediction –

 

no OPC Contour prediction –

 

with OPC

SEM Image –

 

no OPC SEM Image –

 

with OPC

K. Wells-Kilpatrick: 2007
12 
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45nm: OPC as a Variation Management Technique

Top-down resist CD meets spec, but poor contrast leads to poor resist profile which gets 
transferred to metal pattern after etch, resulting in shorting marginality

Computational lithography solution
K. Kuhn, IEDM 2007
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MEEF 
Mask Error Enhancement Factor

•
 

MEEF is a scaling factor that causes certain layout 
geometries to exhibit a greater sensitivity to mask 
dimension tolerances.

•
 

Any dimensional error in the mask is magnified on the 
wafer by the MEEF value. 

•
 

Depending on the value of the mask error and the 
lithography exposure/focus conditions the final printed 
pattern can be either larger or smaller. 

Wwafer

 

= MEEF * Wmask

15 
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MEEF Impact on Ze Error

Ze error can be either
positive or negative

YellowYellow: DCCD contour after OPC
Green: with -3.375 nm mask making error
Red: with 3.375 nm mask making error

65nm Simulation

MEEF = 8.4

Notch width = 120nm
Notch height = 250nm

16 



Kuhn - 2009 2nd International CMOS Variability Conference - London
22

MEEF and Historical gate CD vs. pitch

Low  MEEF requires targeting in the  “flat”

 

portion of CD vs. pitch 
Process innovations continue this trend in the 32nm node 
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based OPC
248nm; OAI; model-

 

based OPC
193nm; OAI; model-

 

based OPC

193nm; APSM; model-

 

based OPC

 

double patterning
193nm; immersion; APSM; model-

 

based 
OPC; double patterning; polarization

C. Kenyon
TOK conf.
Dec. 2008
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FLARE
•

 
Flare is unwanted scattered 
light arriving at the wafer

•
 

Flare is caused by 
interactions that force the 
light to travel in a "non-ray 
trace" direction. 

•
 

Flare is both a function of 
local environment around a 
feature (short range flare) 
and the total amount of 
energy going through the 
lens (long range flare). 

19 
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Impact of flare on gate CDs 

•

 

During 65nm process development, large CD 
deviations were observed for structures having 
identical pitch and reticle CD due to flare

•

 

Gates only 500m away from one another could 
be >5nm different in CD

All structures have identical reticle CD and pitch

Moderate 
chrome density

Low 
chrome density
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C. Kenyon
TOK conf.
Dec. 2008
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Development effort produced an algorithm capable of scanning 
designs and binning regions by local chrome fraction

Binning algorithm is combined with flare-calibrated OPC model
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Flare Variation Improvement 
with OPC

C. Kenyon, TOK conf., Dec. 2008 21 
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Etch

Design

OPC/RET Trim mask 
Reticle 

manufacturing

Phase mask 
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(magnified 25,000X)

Trim mask data

Phase mask data

Putting it all together 
for the gate layer of a 
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22 
C. Kenyon
TOK conf.
Dec. 2008

http://circuit.intel.com/Circuit/Index/News/Lead+Story/centrino12LG_PT.htm
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45nm highlights role of lithography/etch in 
resolving LER/LWR

K. Kuhn, ITJ, 2008

Original

Improvements B,C

Improvement A

Final after improvements A,B,C

23 
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Gate CD variation improvements 
with technology scaling
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 WID-total
0.7X 

Critical to management of variation is the ability to deliver   
a 0.7X gate CD variation improvement in each generation

enabled by continuous process technology improvements  

Technology Trend 
Systematic Gate CD Lithography Variation  

GENERATION
GATE PITCH
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Part I –
 

Physical Variation Sources
 and Mitigation

Polish

Patterning

Strain

25 
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CMP Integration at 45 nm –
 

HiK
 

Metal Gate

First Generation HiK
 

–
 

Replacement Metal Gate
Three critical CMP operations in the FE

K.Mistry et al., IEDM  (2007)
C.Auth et al. VLSI Symp, (2008)
J. Steigerwald, IEDM (2008)J. Steigerwald, IEDM (2008)

STI deposition and polish

Wells and VT implants

ALD deposition of high-k gate dielectric

Polysilicon

 

deposition and gate patterning

S/D extensions, spacer, Si recess and SiGe

 

deposition

S/D formation, Ni silicidation, ILD0 deposition

Poly Opening Polish, Poly removal

PMOS workfunction

 

metal deposition

Metal gate patterning, NMOS WF metal deposition

Metal gate fill and polish, ESL deposition

STI STI 
CMPCMP

MGD MGD 
CMPCMP

POP POP 
CMPCMP

26 
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STR Pattern Density Variation Impact

High Pattern Density Low Pattern Density

Slower Polish Rate Faster Polish Rate

OxideSilicon
Nitride

28 
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STI Step Height Variation

STI

Positive Step Height Zero Step Height

STI

High Pattern
Density Area

Low Pattern
Density Area

STI 
topography

impacts 
transistor
Le and Ze 

29 
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STI Step Height Variation

STI

Zero Step Height

STI

High Pattern
Density Area

Low Pattern
Density Area

STI topography
impacts transistor
Le and Ze 

Poly Poly

30 
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Poly

Poly

STI Step Height Impact on Gate CD

Positive
Step Height

Negative
Step Height

“Dogbone”
Lg

 
is longer at the diffusion boundary

GATE

GATE

Diffusion

Diffusion

STI

STI

“Icicle”
Gate CD is shorter at the diffusion boundary

31 



Kuhn - 2009 2nd International CMOS Variability Conference - London
37

SRAM Density Scaling

90nm – TALL
1.0 m2

65nm – WIDE - 0.57 m2
45nm – WIDE 

0.346 m2

32nm – WIDE 
0.171 m2

65nm to 32nm:  Patterning and polish enhancements
•

 
Improved CD uniformity across STI boundaries

•
 

Square corners (eliminate “dogbone”
 

and “icicle”
 

corners)

32 
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CMP Integration at 45 nm –
 

HiK
 

Metal Gate

First Generation HiK
 

–
 

Replacement Metal Gate
Three critical CMP operations in the FE

K.Mistry et al., IEDM  (2007)
C.Auth et al. VLSI Symp, (2008)
J. Steigerwald, IEDM (2008)J. Steigerwald, IEDM (2008)

STI deposition and polish

Wells and VT implants
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deposition and gate patterning

S/D extensions, spacer, Si recess and SiGe

 

deposition

S/D formation, Ni silicidation, ILD0 deposition

Poly Opening Polish, Poly removal

PMOS workfunction

 

metal deposition

Metal gate patterning, NMOS WF metal deposition
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STI STI 
CMPCMP
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CMPCMP
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•
 

Gate height control critical to reducing variation
•

 
PMOS/NMOS differences complicate CMP

NMOS PMOS

C.Auth et al. VLSI Symp, (2008)

Epi

 

S/D

NiSi

HiK

J. Steigerwald, IEDM 2008

Variation Challenges of RMG CMP Steps

nWFM pWFM

HiK

34 
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Variation Challenges of RMG CMP Steps

S/D region –
 

attacked 
during poly etch

Gate 
region

J. Steigerwald, IEDM 2008

NMOS S/D 
region 
contact

S/D region –
 

marginal 
contact

OVERPOLISH
Exposes raised S/D
Rext/mobility impact

UNDERPOLISH
Underetched

 
contact

Rext
 

impact

35 
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Poly Opening Polish (POP) 
Thickness Control

45nm: with-in die (WID) and with-in wafer (WIW) improvement
High selectivity between films is required.

Key aspect is control of polish rate at edge of wafer.

POP: WID by process Rev.

Process Rev

Patterned Wafers: WIW Profiles
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36 
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45 nm:  POP CMP Improvement
 Overscaling

 
Topography Improvement

Improvements in polish enabled dramatic 
improvements in topography variation

Technology node (nm)

C
M

P 
To

po
gr

ap
hy

 

0.01

0.1

1

350 250 180 130 90 65 45

45nm: 2X greater 
than standard 

technology scale

J. Steigerwald, IEDM 2008

0.7X 
improvement

37 
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Part I –
 

Physical Variation Sources
 and Mitigation

Polish

Patterning

Strain

38 
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Strain: Importance in scaling 

Strain (first introduced at 90nm) is a critical 
ingredient in modern transistor scaling

130nm 90nm 65nm 45nm 32nm

PMOS

C
ha

nn
el

 s
tr

ai
n

39 
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Strain: Pitch dependence 

NMOS 
Pitch degradation 
increases with film 
pinchoff, requires 

higher stress,           
thinner films

PMOS 
eSiGe

 

S/D mobility 
strongly dependent 

on pitch

C. Auth, VLSI 2008
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NMOS strain: Scaling with pitch
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C. Auth, VLSI 2008
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PMOS strain: Scaling with pitch 

1.2

1.3

1.4

65nm 45nm

Technology node

Removal of 
Gate

Increase to
30% Ge

Proximity
Reduction

C. Auth, VLSI 2008

ID
SA

T 
(a

.u
.)

Increase
%Ge

Move SiGe

Remove Gate
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Random VT

 

variability 
and strain

Similar VT

 

matching with CESL while 35% ION

 
enhancement is achieved
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IEDM 2008

pp.  245-248
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DO BOTHDO BOTH
Part II:  

Measurements, results 
and interpretation

44 
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Systematic and Random

•
 

Statistician’s                 
viewpoint:

•
 

Process engineer’s 
viewpoint:  

•
 

Device engineer’s    
viewpoint: 

Systematic

Random

Random

 

Systematic

FixFix

Random

 

Systematic

VT1

S D

VT2

S D

VT1

S D

VT2

S D

45 
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Measurement “food pyramid”
•

 

In-line or off-line physical 
measurements of test wafers 
(TEM, SIMs, Auger, etc.)

•

 

Device parametric 
measurements on test material 
(Ion/Ioff, IG/VG etc.)

•

 

In-line physical measurements 
of selected sites in product 
(CD, thickness, etc.)

•

 

Device parametric 
measurements on product 
(Idsat/lin, VT)

•

 

Device parametric 
measurements on simple 
circuits (fmax, fmin, etc)

•

 

Device sort on completed 
product (Vccmin

 

and 
performance)
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Measurement of Random and Systematic 
VT Variation at the Device Level

Traditional method:  
1.

 

Measure two identical adjacent devices and 
extract the difference (VTA-VTB)

2.

 

Measure the entire population of all devices 
and extract (VTpop)

Random Variation 
for a matched pair

)()( DVTVTVTStdDevRandom BAmp 

2
2

2
)()( 







DVTVTSystematic pop


Random Variation 
for a single device 2

)(
2

)( DVTVTVTStdDevRandom BA
deviceone







Systematic Variation 
for a single device

VT1

S D

VT2

S D
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Pelgrom
 

Plots: What is AVT
 

anyway?
 Two

 
choices are widely used in the literature

Choice A
Slope of VT vs

 
1/LW

Choice B
Slope of VT vs

 
1/LW

2

IEDM 2008: ArnaudIEDM 2008: Weber

<
48 
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What did Pelgrom
 

say?  

•
 

Eq. 5 defines a generic AP

 

for a parameter P; implying 
AVT

 

would then be the parameter for VT

•
 

However, one page further in the paper, he explicitly 
defines AVT

 

in terms of VT

 

only in equation 8: 

•
 

So –
 

which is did he mean?  Well, I asked him. 

Pelgrom
 

“Matching properties of MOS transistors”
(IEEE Journal of Solid-State Circuits, Vol. 24, No. 5, Oct. 1989)

49
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What is AVT
 

anyway?
 Two choices are widely used in the literature

Choice A
Slope of VT vs

 
1/LW

Choice B
Slope of VT vs

 
1/LW

2 This is AVT

<

IEDM 2008: ArnaudIEDM 2008: Weber
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What is AVT
 

anyway?
 Two choices are widely used in the literature

Choice A
Slope of VT vs

 
1/LW

Choice B
Slope of VT vs

 
1/LW

2
I will call this CVT (or C2)

CVT

 

= AVT

 

/ This is AVT

<

IEDM 2008: ArnaudIEDM 2008: Weber

51 
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Additional propagation of confusion 
(By me, it turns out …)  

K. Kuhn, IEDM 2007
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What is BVT
 

then?

Slope of VT vs
 

(Tinv(VT+0.1)/LW) 
BVT

Fig. 3: Takeuchi, IEDM 2007
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But what about simple circuits?

One powerful tool for assessment of variation is locating 
ring-oscillators (ROs) routinely in all product designs 

55 
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Random and Systematic Variation
for Matched Ring Oscillators

Random:
• Calculate Delta

• Random Variation

2
200*

FreqBFreqA
FreqBFreqADelta






)(DeltaStdDevRand 

2
)()( FreqBMeanFreqAMean 



2
2

100* RandSyst 












)(FreqAStdDev
Systematic:
• Total Sigma

• Grand Mean

• Systematic Variation

per data unit

per data unit

per data unit

Total Variation: 100*
)(
)(

FreqAMean
FreqAStdDevTotal  per data unit
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For random variation:  Uniform across wafer
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57 



Kuhn - 2009 2nd International CMOS Variability Conference - London
63

0

0.5

1

1.5

2

N
O

R
M

A
LI

ZE
D

 %
 V

ar
ia

tio
n

Standard 
oscillator

SYSTEMATIC

Entire 
population

One wafer 

One die 

Standard 
oscillator

0

0.5

1

1.5

2

N
O

R
M

A
LI

ZE
D

 %
 V

ar
ia

tio
n

RANDOM

Entire 
population

One wafer 

One die 

45nm: Within Die (WID), Within Wafer 
(WIW) and Wafer to Wafer (WTW)

For random variation:  Uniform with population choice
For systematic variation:  Variation increases significantly 

going from within-die (WID) to within-wafer (WIW)
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45nm Product wafer: Random variation
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Normalized random variation
standard deviation per oscillator (%)
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Random and Systematic Variation Trends

Systematic WIW variation 
is comparable from one 
generation to the next

Random WIW variation in 
32nm is comparable to 
45nm and significantly 

improved over 65nm and 
90nm due to HiK-MG 

HiK-MG
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What about more complex circuits?
 RSM Methodology for Variation Model Parameters

•

 

Identify the set of input parameters in 
variation modeling files that can be 
allowed to vary

•

 

Create DOE to vary all parameters within 
selected limits

•

 

Create a series of variation modeling files, 
using the matrix of parameters from the 
DOE

•

 

Simulate an appropriate set of circuits 
and devices to obtain responses to the 
set of variation modeling files

•

 

Enter simulation results back into DOE to 
determine sensitivity to model parameters

•

 

Optimize variation modeling file 
parameters to get best match to 
measured data
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Example Matrix of Inputs and Associated Responses

BA JIHGFEDC

1

4

3

2

Inputs

R
es

po
ns

es

Not all responses are sensitive to all inputs–

 

key is to determine which 
responses are appropriate for setting each input parameter

Sensitivity of response 
“2”

 

to input “E”
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32nm SRAM Test Chip

291Mbit SRAM

SRAM test chip with advanced test features (PBIST, eFUSE, ECC, etc.) 
to support development of 32nm high-volume manufacturing process

3.25Mb SRAM Macro

K. Zhang, ISCC 2009 63 
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69Wafer-level SRAM P/NMOS transistor systematic systematic VT variation

Typical SlowFast

Die-level 
Read / Write VCCmin

Transistor randomrandom
VT

 

variation (VT, random

 

)

Read: Static-Noise-Margin (SNM)
&

Dynamic Stability
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K. Zhang, ISCC 2009
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3.25Mb SRAM Macro

Frequency (GHz)Frequency (GHz)
22 33 44 55 66

VC
C

 (V
)

VC
C

 (V
)

1.11.1

1.01.0

0.90.9

0.80.8

1.21.2

1.31.3

32nm Voltage-Frequency Shmoo

•

 

32nm SRAM operates over a broad range of supply voltages, 
enabling dynamic voltage scaling for low-power application

•

 

32nm SRAM achieves operating frequency of 4GHz at 1.0V, 
15% better than 45nm design

4GHz4GHz2GHz FAILFAIL

PASSPASS

K. Zhang, ISCC 2009 65 
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Part III:  
Next generation 

challenges
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Lithography Pipeline

Extend 193nm Optical Lithography as far as possible
Deploy EUV Lithography when available/affordable
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Extreme Ultraviolet Lithography

Intel EUV Mask

C

2H 08

2007

1H’08

Target

2H’08

Continued progress towards EUV implementation
Photoresist

 

Development Nikon EUV1 printed wafer

ASML ADT printed wafer

Philips beta source

Cymer beta source

M. Bohr, ISCC, 2009 68 
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Pitch Doubling 2-D Features

Double Patterning
•

 

Pitch doubling

•

 

Improved 2-D features

Non-EUV Lithography Beyond 32 nm

Spacer Gate Patterning
•

 

Pitch doubling

•

 

Improved variation

M. Bohr, ISCC, 2009
Bencher et al, Proc. of SPIE Vol. 6924 69244E-7
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Pitch doubling and gate CD control

Gate layer
Pattern transfer layer

Gate layer
2nd

 

pattern transfer layer
1st

 

pattern transfer layer

Resist freeze

Both techniques still 
require resolution
of a very small space 
(MEEF, LWR  etc.)

Neither
Resist Freeze nor
Double Pattern Transfer 
achieve full benefit of 
patterning at ½

 
pitch 

Double Pattern
Transfer

C. Kenyon, TOK conf., Dec. 2008
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Disadvantages of Double-patterning

Misalignment between the 2 exposures is a crucial 
liability for this technique and can limit its usability

Transistor parameters can be affected by asymmetry 
between the source and drain regions

Print 1 Print 2

Misalignment

Registration (nm)

N
O

R
M

A
LZ

ED
 ID

SA
T
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Pitch doubling and gate CD matching 

Pitch doubling eliminates the close correlation which 
currently exists between the CDs of adjacent gates

This has implications for memory cells and other circuits 
which depend upon this CD matching

A A

B

A

B BB
1266

1264
1262

860

Gate CD mismatch 

SR
A

M
 V

cc
m

in

72 
C. Kenyon, TOK conf., Dec. 2008
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Single patterning:  the distribution of CD mismatches between 
adjacent gates is a very small fraction of total gate CD variation

Pitch doubling: the distribution of CD mismatches is 
GREATER than the total gate CD variation

Pitch doubling and gate CD matching 

-4 -3 -2 -1 0 1 2 3 4

Pitch doubling
adjacent gate CD 

mismatches

Total gate CD 
distribution

Single patterning 
adjacent gate CD 
mismatches

C. Kenyon, TOK conf., Dec. 2008
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Pitch Doubling 2-D Features

Double Patterning
•

 

Pitch doubling

•

 

Improved 2-D features

Non-EUV Lithography Beyond 32 nm

Spacer Gate Patterning
•

 

Pitch doubling

•

 

Improved variation

M. Bohr, ISCC, 2009
Bencher et al, Proc. of SPIE Vol. 6924 69244E-7
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Bencher et al, Patterning by CVD Spacer Self Alignment 
DoublePatterning

 

(SADP), Proc. of SPIE Vol. 6924 69244E-7

Spacer patterning retains correlation                
between doubled features 

Alternative:  Spacer patterning
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Spacer inhomogenities
 

not transferred to 
patterned features

Alternative:  Spacer patterning

Bencher et al, Patterning by CVD Spacer Self Alignment 
DoublePatterning

 

(SADP), Proc. of SPIE Vol. 6924 69244E-7 76
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65nm node 45nm node 32nm node

Uniformity matters:  
Logic images vs. technology node 
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Layout Restrictions 65nm to 32nm
65 nm Layout Style 32 nm Layout Style

•

 

Bi-directional features
•

 

Varied gate dimensions
•

 

Varied pitches

•

 

Uni-directional features
•

 

Uniform gate dimension
•

 

Gridded layout

M. Bohr, ISCC, 2009
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Transistor Architecture 
Enhancements

Fully depleted devices 
(such as UTB or FinFET) 
are examples of 
innovations which permit 
significant improvement 
in RDF due to the ability 
to maintain channel 
control at lower channel 
doping. 

Weber et al. IEDM 2008 pp.  245-248

Vellianitis et al. IEDM 2008 pp.  681-683
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Weber et al.
IEDM 2008

pp.  245-248

Fully depleted devices (such as UTB or FinFET) are 
examples of innovations which permit significant 
improvement in RDF due to the ability to maintain 
channel control at lower channel doping. 

Weber’s
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Closing 
Thoughts

81 
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Normalized random variation
standard deviation per oscillator (%)
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Random and Systematic Variation Trends

Systematic WIW variation 
is comparable from one 
generation to the next

Random WIW variation in 
32nm is comparable to 
45nm and significantly 

improved over 65nm and 
90nm due to HiK-MG 

HiK-MG
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45 nm:  POP CMP Improvement
 Overscaling

 
Topography Improvement

Improvements in polish enabled dramatic 
improvements in topography variation

Technology node (nm)
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P 
To
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hy

 

0.01

0.1

1

350 250 180 130 90 65 45

45nm: 2X greater 
than standard 

technology scale

J. Steigerwald, IEDM 2008

0.7X 
improvement
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Gate CD variation improvements 
with technology scaling
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Critical to management of variation is the ability to deliver   
a 0.7X gate CD variation improvement in each generation

enabled by continuous process technology improvements  

Technology Trend 
Systematic Gate CD Lithography Variation  

GENERATION
GATE PITCH
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SRAM Density Scaling
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2X bitcell area 
scaling

Improved fidelity / uniformity on 32nm vs
 

90nm

K. Zhang, ISCC, 2009
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For further information on Intel's silicon technology, please visit our 
Technology & Research page at

www.intel.com/technology

Q&A

Blood cell:  Elec. Mic. Fac. (NCI-Frederick) 2007

32nm SRAM Cell: 0.171 um2
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