

Transform Intel® Xeon® Processor 5500 Series

Pat Gelsinger
Sr. Vice President, Intel Corporation
General Manager, Digital Enterprise Group

Intel® Xeon® Processor 5500 Series: Transforming Computing

Most Important Server Launch Since Pentium® Pro 15 Billion Connected Devices Design and Discovery

Intelligent Platform
World's Most Adaptable Server Platform

Intelligent Choice

Delivers Higher Performance, Lower TCO
Estimated 8 Month Payback for Single-core Server Refresh

Intel® Xeon® Processor 5500 Series: Transforming Computing

Most Important Server Launch Since Pentium® Pro 15 Billion Connected Devices Design and Discovery

Intelligent Platform
World's Most Adaptable Server Platform

Intelligent Choice

Delivers Higher Performance, Lower TCO
Estimated 8 Month Payback for Single-core Server Refresh

Intel® Pentium® Pro Processor High Performance Lower Cost SMP

Technology

Enterprise and Server Hardware Industry Overview

"Intel"ization: The SHV server threat to SUNW, IBM et al.

"Intel is days from launching its major offensive into the server market"

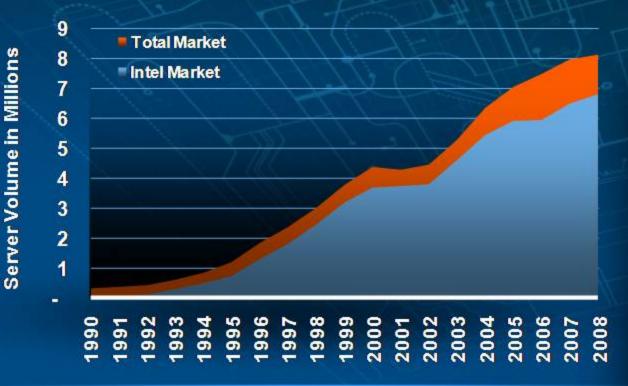
April 9, 1996

much of the booming server

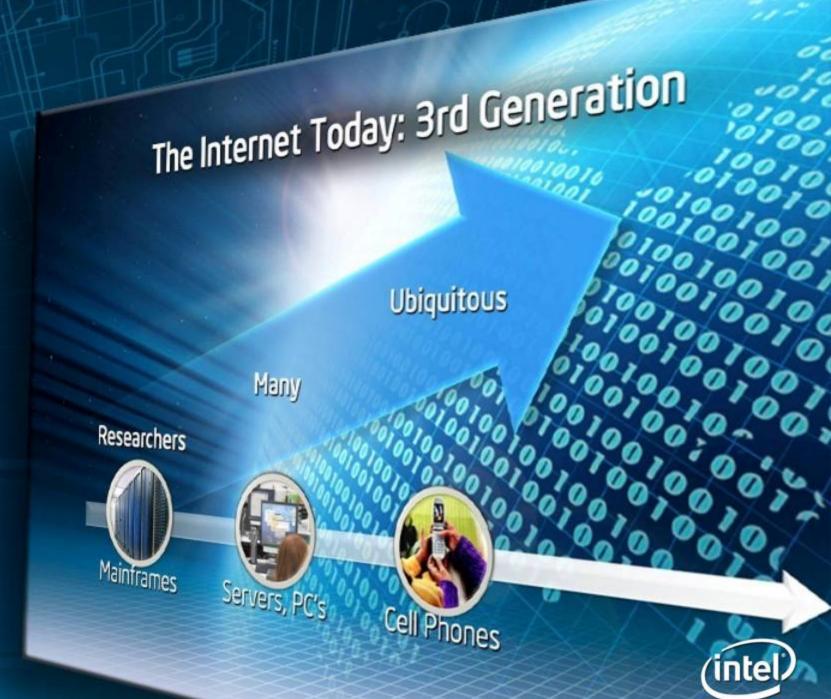
only as a low-end threat—by rformance of *any* of today's 32-

- Most vulnerable: Margins at Sun Microsystems and IBM.
- Surprisingly well positioned: Hewlett-Packard and Digital Equipment (perhaps even Data General).

Established the Standard High Volume Server OSOFE NT for the SHV


1995 and has been updated to reflect new performance

Intel is days from launching its major offensive into the


In our 1994 SHV Server report we wrongly predicted a major price war to break out in the server market by market with Penrium along initial moves into the

The Foundation of the World Wide Web

Annual Server Unit Shipments

IA High Volume Server Standards Software

Evolving to the Embedded Internet

Mainframes

Client/Server

Web

Cloud Architecture

Requires Dynamic, Efficient and Scalable Infrastructure

Next Gen of High Performance Computing Transforming Design and Discovery

Design Smarter

Simulation

Analysis

Top Performing Manufacturers:

- Get product to market 58 days faster
- Have 48% lower prototyping costs

Make New Discoveries

NASA Ames will develop a computational system with one PetaFLOPs peak performance in 2009. "Such a monumental increase in performance will help fulfill NASA's increasing need for computing capacity...for future missions."

S. Pete Worden. Ames Director

"Scinet has an insatiable demand for performance... investigating the forces that govern the universe. The clusters based on the new Intel® Xeon® 5500 series processor keep us on the leading edge... to enable new discoveries."

Dr. Chris Loken, Chief Technology Officer SciNet

Intel® Xeon® Processor 5500 Series: Transforming Computing

Most Important Server Launch Since Pentium® Pro 15 Billion Connected Devices Design and Discovery

Intelligent Platform
World's Most Adaptable Server Platform

Intelligent Choice

Delivers Higher Performance, Lower TCO Estimated 8 Month Payback for Single-core Server refresh

Engineering Scalability

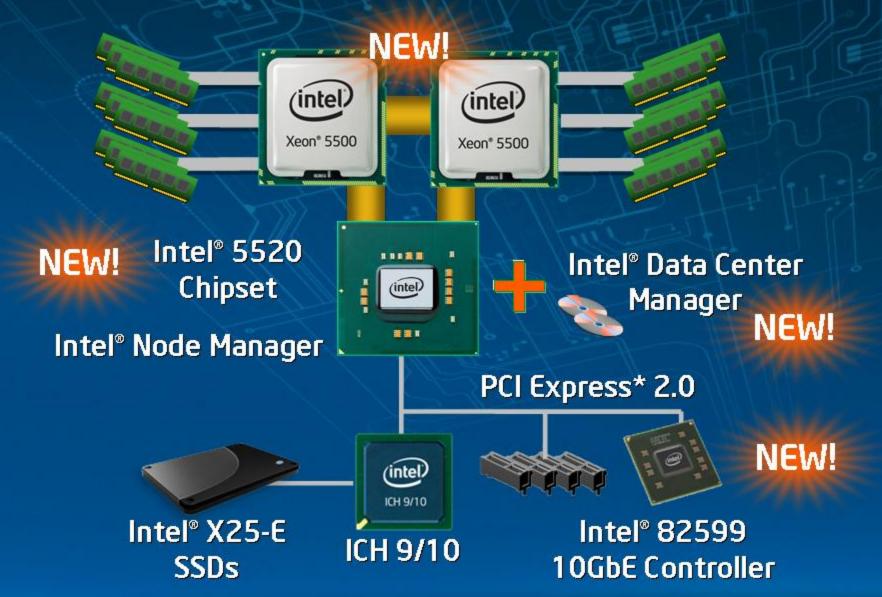
Supersonic Speed

Huge Capacity

Maximum Fuel Efficiency

Silicon Offers the Opportunity to Scale with a Single Design

Intel® Xeon® 5500 Processor



- 45 nm Hi-K Quad Core processor
- Intelligent Performance
- Adaptable Energy Efficiency
- Flexible Virtualization

A New Generation of Intelligent Server Processors

Intel® Xeon® 5500 Platform

- New Memory Subsystem
- Intel® QuickPath Interconnect
- Intel® Intelligent Power Technology
- New I/O Subsystem

Platform Ready for Future 32nm Products

Intel® Xeon® 5500: Intelligence Built-In

Frequency Sensitive

Power Constrained

Native

Responsive Performance

Intel® Microarchitecture Nehalem Intel® Turbo Boost Technology Intel® Hyper-Threading Technology Enhanced Virtualization

Intel® Intelligent Power Technology

Integrated Power Gates
Automated Low-Power States
Intel® Node Manager

Highly Parallel

Performance Critical

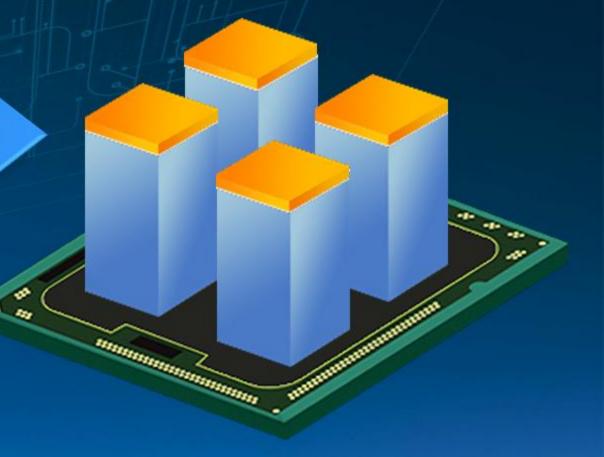
Virtualized

Adapts To Your Application and User Environment

Previous Generation

without Turbo

Intel Xeon® 5500 with Turbo


Previous Generation
without Turbo

Threaded

Workload < TDP

Intel Xeon 5500

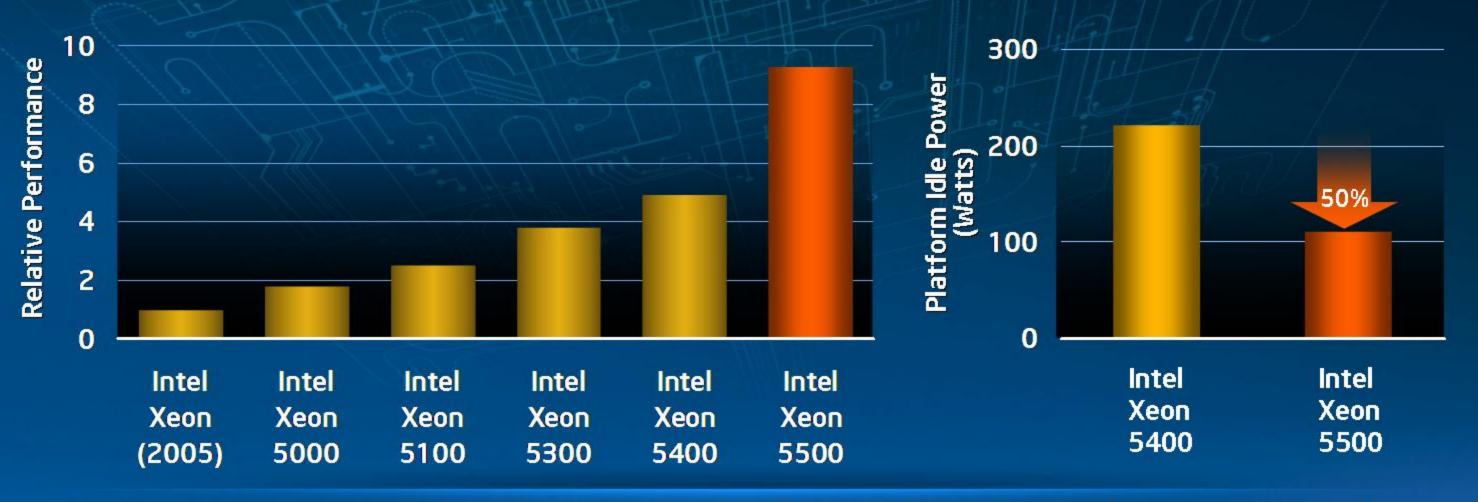
with Turbo

Intel Xeon® 5500 Previous Generation without Turbo with Turbo Lightly Threaded Workload < TDP

Previous Generation

without Turbo

Intel Xeon® 5500
with Turbo


Intelligently Delivering Optimal Performance and Energy Efficiency

2-Socket Server Performance

The Greatest Intel® Xeon® Performance Leap In History!

Performance When You Need It. Power Savings When You Don't

Intel® Xeon® 5500 Performance Publications

SPECint*_rate_base2006
240 score (+71%)

SPECpower*_ssj2008

1943 ssj_ops/watt (+71%)
Oracle JRockit* JVM

SPECfp*_rate_base2006

194 score (+125%)

CISCO

SPECjAppServer*2004

3,975 JOPS (+93%)
Oracle WebLogic* Server

TPC*-C

631,766 tpmC (+130%)
Oracle 11g* database

SAP-SD* 2-Tier

SPEComp*Mbase2001

43,593 score (+154%) Intel Compiler 11.0/RHEL 5.3*

TPC*-E

800 tpsE (+152%)
Microsoft SQL Server* 2008

SPECWeb*2005

71,045 score (+140%)
Rock Web* Server

Fluent* 12.0 benchmark

Geo mean of 6 (+127%)
ANSYS Fluent*

SPECjbb*2005

604,417 BOPS (+64%)
IBM J9* JVM

SPECapc* for Maya 6.5

7.70 score (+87%) Autodesk* Maya

Over 30 New 2S Server and Workstation World Records!

Percentage gains shown are based on comparison to Xeon 5400 series; Performance results based on published/submitted results as of March 30, 2009. Platform configuration details are available at http://www.intel.com/performance/server/xeon/summary.htm *Other names and brands may be claimed as the property of others

Examples of Software Optimized for the Intel® Xeon® 5500

Over 100 Optimized Software Products From Around The World

Examples of Software Optimized for the Intel® Xeon® 5500

Schlumberger OXA

Over 100 Optimized Software Products From Around The World

Telecom espial

Neusoft 东软

Manufacturing

Financial Services
THOMSON REUTERS
SUNGARD®

Healthcare

Americas

SIEMENS

Europe 37

PRC 15

APAC

Enterprise

Kingdee

Security

3

Rendering

Online Gaming

With Over 30 Real World Applications Seeing
Up to 2-3X Performance Gains*

Weather

Transforming the Datacenter

"Private Cloud"
Automated, Scalable
and On-Demand

Dynamic Resource Management

Server Consolidation

Balanced Platform

Performance, Memory and I/O Capabilities

Efficient Datacenter

Platform/Rack Efficiency, Higher ambient temp

Server Pool Flexibility

Similar Instruction Set Between Servers

Unified Network

10Gb Ethernet for Storage and Network

Technology Foundation for the Dynamic Datacenter

Compute

Intel® Xeon® 5500 Platform with Enhanced Compute and I/O Virtualization

IT Result:

Workload Agility
Simpler and Lower Cost
Performance for Responsive Scalability

Network

10Gb Ethernet with Built-in Support for Unified Fabric

Storage

Open Platforms and Performance Breakthroughs (SSDs)

Technology Foundation for the Dynamic Datacenter

Compute

Intel® Xeon® 5500 Platform with Enhanced Compute and I/O Virtualization

Virtualization Performance:

Up to 160% Greater Performance

Based on VMware* VMmark¹

Network

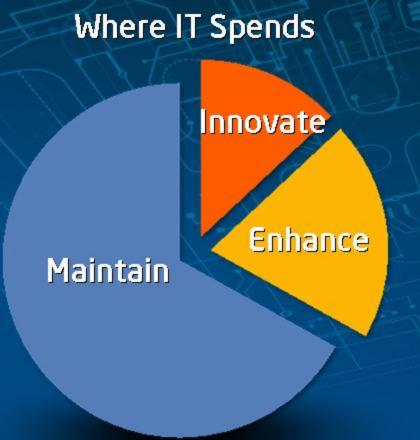
10Gb Ethernet with Built-in Support for Unified Fabric

Storage

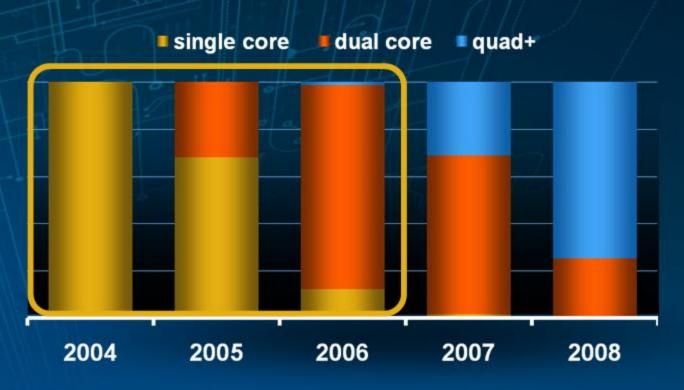
Open Platforms and Performance Breakthroughs (SSDs)

Intel® Xeon® Processor 5500 Series: Transforming Computing

Most Important Server Launch Since Pentium® Pro 15 Billion Connected Devices Design and Discovery


Intelligent Platform
World's Most Adaptable Server Platform

Intelligent Choice


Delivers Higher Performance, Lower TCO
Estimated 8 Month Payback for Single-core Server Refresh

The Server Install Base

Intel® Xeon® Shipments

Estimate 40% Single-core, 40% Dual-core In Traditional IT Infrastructure Today

Source: Gartner IT Key Metrics Data 2008

Source: Intel internal data

Refresh Benefits

2005

184 Intel® Xeon® Single Core Servers Performance Refresh

184 Intel® Xeon® 5500 Based Servers Up to 9X Performance

18% Annual Energy
Costs Estimated Reduction

– OR –

Efficiency Refresh

21 Intel® Xeon® 5500 Based Servers

As low as 8 Month Payback

90% Annual Energy
Costs Estimated Reduction

Price/Performance vs. RISC

T5240 SUN* UltraSPARCT2+* P570 IBM* POWER6*

SPECJbb2005* 1.18x SPECint*-rate 2006 1.65x SPECfp*-rate2006 1.71x

 SPECJbb2005*
 2.20x

 SPECint*-rate 2006
 2.22x

 SPECfp*-rate 2006
 1.86x

Less than 1/2
System Cost

Up to 1.71 X
Performance

Less than 1/10 System Cost

Up to 2.45X
Performance

Source: UltraSPARCT2+ results published on spec.org. Intel estimates as of Feb 2009. Intel results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. For detailed calculations, configurations and assumptions refer to the legal information slide in backup. All systems priced with 32GB memory, T5240 actual cost from published pricing information, Estimated price used for 2S Xeon system, based on existing 2S system published pricing information. Estimated price used for 2S P570 system. Other brands and names are the property of their respective owners.

Intel® Xeon® 5500 Platform: Extending IA Leadership in Embedded

Military
Aerospace
Government

Medical Imaging

Communications

Intel® Xeon® 5500 Platform: Extending IA Leadership in Telecommunications

Intel® Xeon® 5500 Platform

Thermal Profile for Telecommunications

LV SKUs for Ultra Dense Form Factors

7 Year Extended Life Product Support

Telecommunications-Grade Reliability

Ten of the World's Top Ten TEMs Design with IA

Outstanding Examples of Technologies That Support the Intel® Xeon® 5500 Series

Bladerack 2 X-series

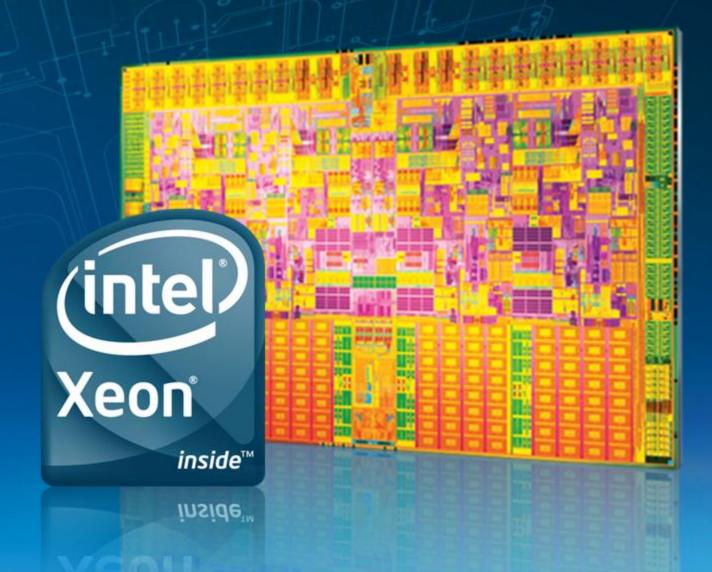
Intel® Xeon® 5500 Series: Worldwide Industry Support

Broadest Ecosystem of Server, Storage & Embedded Partners

Competition for Video Proposals: Design a More Efficient Data Center

Winners Announced at IDF Fall In San Francisco

Visit Intel's Server Room Community for More Details
Http://communities.intel.com/openport/community/server



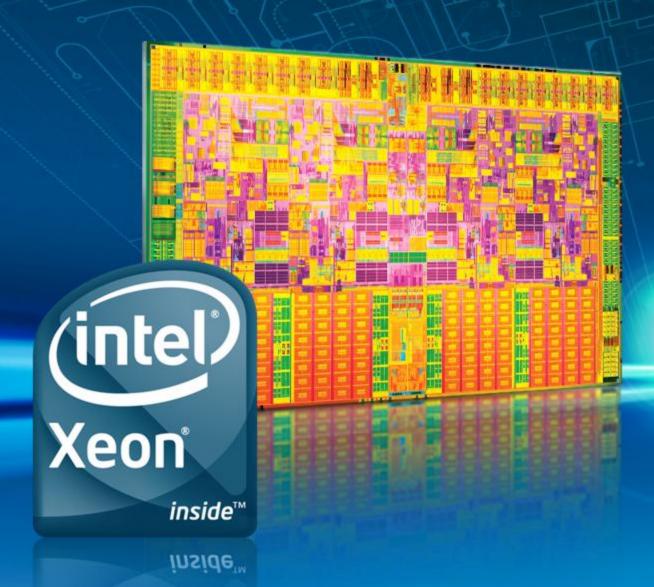
Summary

Most Important Server Introduction Since the Pentium® Pro

Intelligent Platform

Intelligent Choice

Join the Industry's Xeon® 5500 Processor Series Conversation Online at www.intel.com/server



Executive Panel

Pat Gelsinger

Moderator
Intel Corporation

Lincoln Wallen

Head of Research and Development
DreamWorks Animation SKG

Josh Crowe
Vice President
of Engineering
Savvis, Inc.

HUMANA. Guidance when you need it most

Paul Ratner Vice President IT Operations Humana, Inc.

Mazen Rawashdeh Sr. Director of Operations Infrastructure and Engineering

Keith Gray

Manager
High Performance &
Technical Computing
BP, Inc.

Mazen Rawashdeh

Sr. Director of Operations Infrastructure and Engineering eBay, Inc.

Paul Ratner

Vice President IT Operations Humana, Inc.

Josh Crowe

Vice President of Engineering Savvis, Inc.

Lincoln Wallen

Head of Research and Development DreamWorks Animation SKG

Legal Disclaimers

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit http://www.intel.com/performance/resources/limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actual benchmark result for the baseline platform into each of the specific benchmark results of each of the other platforms, and assigning them a relative performance number that correlates with the performance improvements reported.

SPEC, SPECint2006, SPECfp2006, SPECjbb, SPECWeb are trademarks of the Standard Performance Evaluation Corporation. See http://www.spec.org for more information. TPC-C, TPC-H, TPC-E are trademarks of the Transaction Processing Council. See http://www.tpc.org for more information.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For more information including details on which processors support HT Technology, see here

Intel® Turbo Boost Technology requires a Platform with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your platform manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost."

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor series, not across different processor sequences. See http://www.intel.com/products/processor_number for details. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. All dates and products specified are for planning purposes only and are subject to change without notice

* Other names and brands may be claimed as the property of others.

Copyright © 2009 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and Intel Core are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. All dates and products specified are for planning purposes only and are subject to change without notice

Benchmark configuration details

- All comparisons based on published/submitted/approved results as of March 30, 2009
- SPECint_rate_base2006:
- Baseline Intel® Xeon® processor X5470 based platform details: Fujitsu Siemens PRIMERGY® RX200 S4 server platform with two Intel Xeon processors X5470 3.33GHz, 12MB L2 cache, 1333MHz FSB, 16GB memory (8x2GB DDR2 PC2-5300F, 2 rank, CAS 5-5-5, with ECC), SUSE Linux Enterprise Server 10 SP2 x86_64 Kernel 2.6.16.60-0.21-smp*, Intel C++ Compiler for Linux32* and Linux64* version 11.0 build 20080730. Referenced as published at 140. For more information see
- Intel® Xeon® processor X5570 based platform details: Fujitsu PRIMERGY* TX300 S5 server platform with two Intel Xeon processors X5570 2.93GHz, 8MB L3 cache, 6.4GT/s QPI, 48 GB memory (6x8 GB PC3-10600R, 2 rank, CL9-9-9, ECC), SUSE Linux Enterprise Server 10 SP2 x86_64 Kernel 2.6.16.60-0.21-smp, Intel C++ Compiler for Linux32 and Linux64 version 11.0 build 20010131. Submitted to interpretable for review at 240 as of March 30, 2009.
- SPECfp_rate_base2006
- Baseline Intel® Xeon® processor X5482 based platform details: Hewlett-Packard ProLiant DL160 G5p server platform* with two Intel Xeon processors X5482 3.20GHz, 12MB L2 cache, 1600MHz FSB, 16GB memory (8x2GB 800MHz CL5 FB-DIMM), 64-Bit SUSE Linux Enterprise Server 10 SP1, Intel C++ Compiler for Linux32 and Linux64 version 10.1 build 20080730. Referenced as published at 86.4. For more information see
- Intel® Xeon® processor X5570 based platform details: Fujitsu PRIMERGY* TX200 S5 server platform with two Quad-Core Intel Xeon processors X5570 2.93GHz, 8MBL3 cache, 6.4GT/s QPI, 24 GB memory (6x4 GB PC3-10600R, 2 rank, CL9-9-9, ECC), SUSE Linux Enterprise Server 10 SP2 x86_64 Kernel 2.6.16.60-0.21-smp, Intel C++ Compiler for Linux32 and Linux64 version 11.0 build 20010131. Submitted to account for review at 194 as of March 30, 2009.
- Intel® Xeon® processor X5570 based platform details: Cisco B-200 M1 server platform with two Quad-Core Intel Xeon processors X5570 2.93GHz, 8MB L3 cache, 6.4GT/s QPI, 24 GB memory (6x4 GB PC3-10600R, 2 rank, CL9-9-9, ECC), SUSE Linux Enterprise Server 11_RC4 x86_64 2.6.27.15-2-default, Intel C++ Compiler for Linux32 and Linux64 version 11.0 build 20010131. Result measured at 194 as of March 30, 2009.
- SAP-SD 2-Tier
- Baseline Intel® Xeon® processor X5470 based platform details: HP ProLiant BL460C server platform* with two Intel Xeon processors X5470 3.33GHz, 12MB L2 cache, 1333MHz FSB, 32GB memory, Microsoft Windows Server 2003 Enterprise Edition, Microsoft SQL Server 2005, SAP ECC Release 6.0. Referenced as published at 2,518 SD users. Certification number 2008048.
- Intel® Xeon® processor X5570 based platform details: IBM System x3650 M2 Server with two Intel Xeon processors X5570, 2.93GHz 8MB L3 cache, 6.4QPl, 48GB memory, Microsoft Windows Server 2003 Enterprise Edition, DB2 9.5, SAP ECC Release 6.0 (2005). Referenced as published at 5,100 SD users. Certification number 2008079.
- TPC-C
- Baseline Intel® Xeon® processor X5460 based platform details: HP ProLiant ML370 G5 platform with Intel Xeon processor X5460 3.16GHz (2 processors / 8 cores / 8 threads), 2x6MB L2 cache, 1333 MHz system bus, 64GB memory, Microsoft SQL Server 2005 x64 Enterprise Edition SP2, Microsoft Windows Server 2003 Enterprise x64 Ent. R2. Referenced as published at 275,149 tpmC and \$1.44/tpmC; availability date January 7, 2008. For more information see attraction and approximation and a
- Intel® Xeon® processor X5570 based platform details: HP ProLiant DL370 G6* platform with two Intel Xeon processors X5570 2.93GHz (2 processors / 8 cores / 16 threads), 8MB L3 cache, 6.4GT/s QPI, 144 GB memory (18x8 GB DDR3). Oracle 11g database* with Oracle Enterprise Linux OS*. Result submitted to washing as of March 30, 2009.

Benchmark configuration details

- All comparisons based on published/submitted/approved results as of March 30, 2009
- TPC-E
- Baseline Intel® Xeon® processor X5460 based platform details: Fujitsu-Siemens PRIMERGY TX300 S4 server platform* with Intel Xeon processor X5460 3.16GHz (2 processors / 8 cores / 8 threads),
 2x6MBL2 cache, 1333 MHz system bus, 64GB memory, Microsoft SQL Server 200 x64 Enterprise Edition*, Microsoft Windows Server 2008 Enterprise x64*. Referenced as published at 317.45 tpsE
 and \$523.49/tpsE; availability date August 30, 2008. For more information see https://doi.org/inco/results/inc
- Intel® Xeon® processor X5570 based platform details: Fujitsu-Siemens PRIMERGY RX300 S5 server platform* with two Intel Xeon processors X5570 2.93GHz (2 processors / 8 cores / 16 threads), 8MB L3 cache, 6.4GT/s QPI, 96 GB memory (12x8 GB DDR3-1066), Microsoft SQL Server 2008 x64 Enterprise Edition, Microsoft Windows Server 2008 Enterprise x64. Result submitted to www.tpc.org at 800tpsE and \$343.91/tpsE as of March 30, 2009. Availability date April 1, 2009.
- SPECjbb2005
- Baseline Intel® Xeon® processor X5470 based platform details: Fujitsu Siemens PRIMERGY RX200 S4 server platform* with two Intel Xeon processors 5470 3.33GHz, 12MB L2 cache, 1333MHz FSB, 16GB memory, Microsoft Windows Server 2008 Enterprise x64 Edition*, Oracle JRockit 6 P28.0.0 (build P28.0.0-8-109238-1.6.0_05-20090130-1408-windows-x86_64) 4 JVM instances. Referenced as published at 368,034 BOPS. For more information see http://www.com.org/processors/proce
- Intel® Xeon® processor X5570 based platform details: IBM Bladecenter HS22 Server platform* with two Intel Xeon processors X5570 2.93GHz, 8MB L3 cache, 6.4GT/s QPI, 24 GB memory (6x4 GB DDR-1333MHz), Microsoft Windows Server 2008 Enterprise x64 Edition, IBM J9 2.4 JRE 1.6.0 (build pwa6460sr5-20090323_04(SR5)) run with 4 JVM instances. Result measured at 604417 BOPS March 30, 2009.
- SPECweb2005
- Baseline Intel® Xeon® processor X5460 based platform details: HP Proliant DL380 G5 server platform with two Intel Xeon processors X5460 3.16GHz, 12MBL2 cache, 32GB memory (8x4G 667MHz ECC DDR2 FB-DIMM), RedHat Enterprise Linux 5 (2.6.18-53.el5), Rock Web Server v1.4.6 x86_64. Referenced as published at 29591. For more information see
- Intel® Xeon® processor X5570 based platform details: HP ProLiant DL380 G6 platform* with two Intel Xeon processors X5570 2.93GHz, 8MB L3 cache, 6.4GT/s QPI, 144 GB memory (18x8 GB DDR3), Red Hat Enterprise Linux 5.2 .Rock Web Server v1.4.7 (x86_64). Result submitted to were transported by for review at 71,045 as of March 30, 2009.
- Fluent:
- Baseline Intel® Xeon® processor X5482 based platform details: Supermicro X7DB8+* server platform with two Intel® Xeon® processors X5482 3.20GHz, 12MB L2 cache, 1600MHz FSB, 16GB memory (8x2GB 800MHz DDR2 FB-DIMM), 64-bit RedHat Enterprise Linux 5.3*. Performance measured using Fluent Version 12.0 Beta. (Version 12.0.13)*. Six individual benchmarks are shown as a measure of single node performance. "Overall" performance is the geometric mean of the six individual benchmarks.
- Intel® Xeon® processor X5570 based platform details: SGI Altix ICE 8200EX* server platform with two Intel Xeon processors X5570 2.93GHz, 8MB L3 cache, QPI 6.4 MT/sec, 24GB memory (12x2GB 1066MHz DDR3), 64-bit Suse Linux Enterprise Server* 10 SP2 with ProPack 6SP2*. Performance measured using Fluent Version 12.0 Beta. (Version 12.0.9) Six individual benchmarks are shown as a measure of single node performance. "Overall" performance is the geometric mean of the six individual benchmarks.

Benchmark configuration details

- All comparisons based on published/submitted/approved results as of March 30, 2009
- SPECompM2001
- Baseline Intel® Xeon® processor E5472 based platform details: Supermicro X7DB8+ server platform* with two Intel Xeon processors E5472 3.0GHz, 12MB L2 cache, 1600MHz FSB, 32GB memory (8x4GB 800MHz DDR2 FB-DIMM), SUSE LINUX 10.1* (X86-64) (Linux 2.6.16.13-4-smp). Binaries built with Intel Compiler 10.1. Referenced as published at 17187. (SPECompMbase2001). For more information see http://www.apac.org/comp/res/lts/res/2004/acmp2011 21027/linux.
- Intel® Xeon® processor X5570 based platform details: Cisco B-200 M1 server platform* with two Intel Xeon processors X5570 2.93GHz, 8MB L3 cache, 6.4GT/s QPI, 24 GB memory (6x4 GB DDR3-1333MHz), Red Hat EL 5.3, Linux Kernel 2.6.18-128.el5 SMP x86_64, Binaries built with Intel® C/C++ Compiler 11.0 for Linux. Result submitted to www.spec.org for review at 43593 (SPECompMbase2001) as of March 30, 2009.
- SPECpower_ssj2008
- Baseline Intel® Xeon® processor L5430 based platform details: Powerleader PR2510D2 server platform* with two Intel Xeon processors L5430 2.33GHz, 12MB L2 cache, 1333MHz FSB, 8GB memory, Oracle JRockit* (build P27.5.0-5_o_CR371811_CR374296-100684-1.6.0_03-20080702-1651-windows-x86_64, compiled mode). Published at 1135 ssj_ops/watt. For more information see:
- Intel® Xeon® processor X5570 based platform details: Verari Systems, Inc. VB1305 server platform* with two Intel Xeon processor X5570, 2.93GHz, 8 GB (4 x 2), Microsoft Windows Server 2008 Enterprise* Service Pack 2 OS. Oracle JVM (build P28.0.0-14-111048-1.6.0_05-20090303-1104-windows-x86_64, (compiled mode) result of 1943 provided by Verari as of 3/30/2009.
- SPECjAppServer2004
- Baseline Intel® Xeon® processor X5460 based platform details: HP Proliant BL460c G1 server platform with two Intel Xeon processors X5460 3.16GHz, 12MB L2 cache, 16GB memory (8x2G 667MHz ECC DDR2 FB-DIMM), Oracle Application Server 10G Release 10.1.3.3 Java Edition, BEA JRockit(R) 6.0 JDK (R27.3.0-106) (Linux x86 32bit), Oracle Database Enterprise Edition Release 11.1.0.6. Referenced as published at 2056. For more information see
- Intel® Xeon® processor X5570 based platform details: Dell PowerEdge R610 server platform* with two Intel Xeon processors X5570 2.93GHz, 8MB L3 cache, 6.4GT/s QPI, 24 GB memory (12x2 GB DDR3), Oracle WebLogic Server Standard Edition Release 10.3, Oracle JRockit(R) 6.0 JDK (R27.6.0-50) (Linux x86 32bit), Oracle Database Enterprise Edition Release 11.1.0.7, Result submitted to memorphism for review at 3975 as of March 30, 2009.
- VMmark:
- Baseline Intel® Xeon® processor X5470 based platform details: HP Proliant* ML370 G5 server platform with two Intel Xeon processors X5470 3.33GHz, 2x6MB L2 cache, 1333MHz FSB, 48GB memory, VMware ESX V3.5. Update 3 Published at 9.15@7 tiles. For more information see and a published at 9.15@7 tiles.
- Intel® Xeon® processor X5570 based platform details: Dell PowerEdge* R710 Server platform with two Intel Xeon processors X5570 2.93GHz, 8MB L3 cache, 6.4GT/s QPI, 96 GB memory (12x8 GB DDR3-1066MHz), VMware ESX beta build 150817. Submitted to VMware for review at 23.55@16 tiles.

Xeon 5500 Refresh Slides (System Configurations)

- Performance tests and ratings are measured using specific computer systems and/or components
 and reflect the approximate performance of Intel products as measured by those tests. Any
 difference in system hardware or software design or configuration may affect actual
 performance. Buyers should consult other sources of information to evaluate the performance of
 systems or components they are considering purchasing. For more information on performance tests
 and on the performance of Intel products, visit Intel Performance Benchmark Limitations
- Single Core to Xeon 5500 Refresh Configuration Details
- Source: Intel internal measurements 2005 2008 comparing 2S Xeon 3.8GHz (Irwindale), 8x1GB DIMMs, 1 HDD, 382W power under load to 2S Xeon X5570 (Nehalem 2.93GHz), 6x2GB DIMMs, 1 HDD, 315W power under load.
- Dual Core Xeon 5100 to Xeon 5500 Refresh Configuration Details
- Source: Intel internal measurements 2005 2008 comparing 2S Xeon 5160 (Woodcrest 3.0GHz), 8x2GB DIMMs, 1 HDD, 354W power under load to 2S Xeon X5570 (Nehalem 2.93GHz), 6x2GB DIMMs, 1 HDD, 315W power under load.

Single Core Energy Efficient Refresh Calculation Details

	2005	2009	Delta / Notes		
Product	Intel Xeon single core (3.8Ghz w/ 2M cache)	Intel Xeon 5500 series (2.93GHz)			
Performance per Server	50,970 bops SPECjbb2005*	447,000 bops SPECjbb2005*	Up to 8.8x per/server		
kWh per Server/Day	6.704 (382w active / 228w idle)	4.936 (315W active / 151 idle)	Server active 8hrs and idle for 16 hrs per day		
Desired Performance Target = 9.4 millions business operations per second					
# Servers needed	184	21	~ 9:1 server consolidation		
# Racks needed	9 racks	1 rack	9:1 Rack Consolidation		
Total Perf	9.38 million bops	9.38 million bops	Same Performance		
Annual kWhr	451,474	37,938	Estimated 92% lower energy costs		
Annual Energy Costs	\$90,295	\$7,588	\$82,707 electricity costs per year. Assumes \$0.10/kWhr and 2x cooling factor		
OS Licensing Costs	\$165,600	\$18,900	\$146,700 less per year Assumes a RHEL 1yr license at \$900 Source www.dell.com as of 12/16/08		
Annual Cost Savings of \$229,407					
Cost of new HW	n/a	\$147,000	Assume \$7,000 per server		
Estimated Payback Period of 8 months					

Single Core Performance Refresh Calculation Details

	2005	2009	Delta / Notes			
Product	Intel Xeon single core (3.8Ghz w/ 2M cache)	Intel Xeon 5500 series (2.93GHz)				
Performance per Server	50,970 bops SPECjbb2005*	447,000 bops SPECjbb2005*	bops = business operations per second			
Power Consumption per Server	382W active	315W active	Server active 24hr per day (assuming HPC application)			
Data Center Capability = 1 MW						
DC Cooling Factor	1.6 PUE	1.6 PUE	Same Design PUE:= Power Usage Effectiveness.			
# of Servers	1,637	1,637	Same Footprint			
Data Center Performance	83,437,890 bops	731,739,000 bops	Up to 8.8x Performance Increase			
Data Center Power	1,000 KW	825 kW	Estimated 18% Lower Power # of Servers * Svr Power * PUE			

For 50% Lower Platform Idle Power

Configuration details for 50% lower idle power: Intel internal measurements of 221W at idle with Supermicro 2xE5450 (3.0GHz 80W) processors, 8x2GB 667MHz FBDIMMs, 1x700W PSU, 1x320GB SATA hard drive vs. 111W at idle with Supermicro software development platform with 2xE5540 (2.53GHz Nehalem 80W) processors, 6x2GB DDR3-1066 RDIMMs, 1x800W PSU, 1x150GB 10k SATA hard drive. Both systems were running Windows 2008 with USB suspend select enabled and maximum power savings mode for PCIe link state power management. Measurements as of Feb 2009.

Vs UltraSPARCT2+

Intel results achieved with 8 Cores and 16 threads vs 16 cores and 128 threads for SPARC Enterprise T5240 with 1.4 GHz 8-core UltraSPARCT2+. Intel Xeon Processor 5570 (2.93Ghz) vs SUN SPARC T5240 2S/16C 1.4Ghz SPECjbb2005: T5240 384,934 bops and 24,058 bops/jvm Vs Intel Xeon Processor 5570 604,417 bops (see previous slide for details) SPECint*rate 2006base T5240: 142 base...Intel Xeon Processor 5570 240 (see previous slides for details) SPECfp*-rate 2006base T5240:111 base...Intel Xeon Processor 5570 194 base (see previous slides for details)

Note: All systems priced with 32GB memory. DL580 currently at \$13k, Sun Fire X4150 \$11k for systems based on Xeon 5400. Estimating that Nehalem-EP systems will have a 20% premium. T5240 with 32GB memory from SUN website is \$36,495

Vs POWER6

Intel results achieved with Intel Xeon Processor 5570 2.93Ghz. Vs IBM Power* 570 Server with 2 POWER 6 4.7Ghz processors

SPECjbb2005: P570 205,917 bops and 102,959 bops/jvm Vs Intel Xeon Processor 5570 604,417 bops (see previous slide for details)

SPECint*rate 2006base: P570 106 base...Intel Xeon Processor 5570 240 (see previous slides for details)

SPECfp*-rate 2006base: P570 102 base...Intel Xeon Processor 5570 194 base (see previous slides for details)

Note: All systems priced with 32GB memory. DL580 currently at \$13k, Sun Fire X4150 \$11k for systems based on Xeon 5400. Estimating that Nehalem-EP systems will have a 20% premium. Estimated P570 pricing from http://tpc.org/results/individual_results/IBM/IBM_570_4_20070806_es.pdf with 32GB memory 10,195 for base p570 server, plus 2 AC power supplies \$3,004, plus 32x 1GB memory activation at \$1,515 per GB, plus \$92,000 for 4 cpu activations, +23,000 for the physical processor cards