

Mobile Intel Celeron
Processor at 466 MHz, 433 MHz,

400 MHz, 366 MHz, 333 MHz,
300 MHz, and 266 MHz

Specification Update
Release Date: December 2002

Order Number: 244444-039

The Mobile Intel® Celeron® processor at 466 MHz, 433 MHz, 400 MHz, 366 MHz, 333 MHz, 300 MHz, and 266 MHz may
contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are documented in this Specification Update.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, and 266 MHz SPECIFICATION UPDATE

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating
to sale and/or use of Intel products including liability or warranties relating to fitness for particular purpose, merchantability or
infringement or any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

The Mobile Intel® Celeron® processor at 466 MHz, 433 MHz, 400 MHz, 366 MHz, 333 MHz, 300 MHz, and 266 MHz or the
Intel® Celeron® Processor Mobile Module may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

The Specification Update should be publicly available following the last shipment date for a period of time equal to the
specific product’s warranty period. Hardcopy Specification Updates will be available for one (1) year following End of Life
(EOL). Web access will be available for three (3) years following EOL.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com
Copyright © Intel Corporation 1999-2002.

Intel, the Intel logo, Pentium, Celeron, and Xeon are registered trademarks or trademarks of Intel Corporation and its
subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

i

CONTENTS
REVISION HISTORY... ii
PREFACE.. v
GENERAL INFORMATION..1
SUMMARY OF CHANGES..9
ERRATA.. 14
DOCUMENTATION CHANGES... 50
SPECIFICATION CLARIFICATIONS ... 52
SPECIFICATION CHANGES...54

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, and 266 MHz SPECIFICATION UPDATE

ii

REVISION HISTORY
Date of Revision Version Description

January 1999 -001 This document is the first Specification Update for the Intel® Mobile
Celeron® processor.

March 1999 -002 Updated the Documentation Changes and Specifications
Clarifications sections. Changed S-Spec Definition.

April 1999 -003 Added Erratum H43. Updated Processor Identification Information
table and added footnote. Updated Processor Mobile Module
Information table. Added MMC-2 marking diagram.

May 1999 -004 Updated Processor Identification Information table. Added Erratum
H44. Added Documentation Changes H2 through H6. Added
Specification Clarifications H1 and H2. Added Specification Change
H1. Updated BGA1 marking diagram.

June 1999 -005 Updated the Mobile Intel Celeron Processor Identification
Information table. Added µPGA1 marking diagram. Added Erratum
H45. Added Documentation Changes H7 through H10. Added
Specification Change H2.

July 1999 -006 Added Erratum H46. Updated heading in Identification Information
table. Updated the Mobile Intel Celeron Processor Identification
and the Intel Celeron Processor Mobile Module Identification
Information tables. Added Documentation Change H11. Added
mcpA0 stepping to Summary Table of Changes. Updated
Documentation Changes, Specification Clarifications, and
Specification Changes introduction paragraphs.

August 1999 -007 Updated Preface, Documentation Changes, Specification
Clarifications, and Specification Changes paragraphs. Added
Documentation Change H12. Updated Codes Used in Summary
Table. Updated column heading in Errata, Documentation
Changes, Specification Clarifications and Specification Changes
tables.

October 1999 -008 Added erratum H47
November 1999 -009 Added Errata H48, H49; added Documentation Change H13; added

Specification Clarification H3; added Brand ID column in the
Identification Information table. Updated the Mobile Intel Celeron
Processor Identification Information table and notes. Updated the
Intel Celeron Processor Mobile Module Identification Information
table and notes. Added 433 MHz, and 466 MHz references.

December 1999 -010 Added Erratum H50 and Documentation Change H14
January 2000 -011 Added Erratum H51 and Documentation Change H15.
February 2000 -012 Updated Specification Update title to reflect speeds documented.

Revised Erratum H49; Added Erratum H52; Added Document
Change H16. Updated Summary of Changes product letter codes.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

iii

REVISION HISTORY
Date of Revision Version Description

March 2000 -013 Updated the General Information markings. Updated Preface
document reference. Revised Erratum H48 and added Erratum
H53.

April 2000 -014 Updated the Preface with new references; Updated the Intel
Celeron Processor Mobile Module Markings section.

June 2000 -015 Added Erratum H54.
July 2000 -016 Added Erratum H55, H56.
August 2000 -017 Added Erratum H57.
September 2000 -018 Added Erratum H58, H59; Revised Erratum H34, H48, H52; Added

Documentation Changes H17, H18
October 2000 -019 Updated the reference to the published documents in the Preface;

Added Erratum H60; Added Documentation Changes H19, H20.
November 2000 -020 Added Erratum H61.
December 2000 -021 Updated Specification Update product key to include the Intel®

Pentium® 4 processor, Revised Erratum H2; Added Documentation
Changes H21 through H26.

January 2001 -022 Revised Erratum H2; Added Documentation Changes H27 and
H28.

February 2001 -023 Revised Documentation Change H27 and Added H29.
March 2001 -024 Added Erratum H62 and H63.
May 2001 -025 Added Erratum H64
August 2001 -026 Updated Summary of Changes; Added Erratum H65; Added

Documentation Change H30
October 2001 -027 Updated the Celeron® trademark to a registered trademark;

Updated Summary of Changes; Updated Documentation Changes
by removing old items that were incorporated in the new documents
referenced in this spec update.

November 2001 -028 Updated Summary of Changes; Added Documentation Changes
H2, H3, H4, H5, H6.

January 2002 -029 Updated Summary of Changes; Added Documentation Changes
H7, H8, H9, H10, and H11.

March 2002 -030 Updated Summary of Changes; Added Erratum H66; Added
Documentation Change H12.

April 2002 -031 Updated the Documentation Changes by removing old items that
already have been incorporated in the published Software
Developer’s manual.

May 2002 -032 Added Documentation Change H2.
June 2002 -033 Updated Summary of Changes; Added Documentation Change H3

and H4; Added Erratum H67.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, and 266 MHz SPECIFICATION UPDATE

iv

REVISION HISTORY
Date of Revision Version Description

July 2002 -034 Updated Summary of Changes; Removed old items that have been
added to the Software Developers Manual; Added Documentation
Change H4, H5, H6, H7, H8, H9, H10, H11, H12, and H13.

August 2002 -035 Updated the Documentation Changes summary section by
removing old items that already have been incorporated in the
published Software Developer’s manual.

September 2002 -036 Updated the Documentation Changes summary section; Added
Documentation Changes H4, H5, H6, H7, H8, H9, H10, H11, H12,
H13, H14, H15, H16, H17, H18, H19, H20, H21, H22, H23, H24,
and H25.

October 2002 -037 Updated Summary of Changes; Added Processor Type W to Key
list; Added Documentation Changes H26, H27, H28, H29, H30,
H31, H32, and H33. Changed CPUID to CPU Signature in
Processor Identification Table.

November 2002 -038 Updated the Documentation Changes summary section by
removing old items that already have been incorporated in the
published Software Developer’s manual; Added a note in
Documentation Changes.

December 2002 -039 Revised Note about Software Developers Manual updates.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

v

PREFACE
This document is an update to the specifications contained in the following documents:

• P6 Family of Processors Hardware Developer’s Manual (Order Number 244001)
• Intel® Mobile Celeron® Processor in Micro-PGA and BGA Package at 466 MHz, 433 MHz, 400 MHz, 366

MHz, 333 MHz, 300 MHz and 266 MHz datasheet (Order Number 245112)
• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 1 (MMC-1) at 400 MHz, 366 MHz,

333 MHz, 300 MHz, and 266 MHz datasheet (Order Number 2455426)
• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 2 (MMC-2) at 400 MHz, 366 MHz,

333 MHz, 300 MHz, and 266 MHz datasheet (Order Number 245425)

• Intel® Mobile Celeron® Processor: Mobile Module MMC-1 at 466 MHz and 433 MHz datasheet (Order
Number 245101)

• Intel® Mobile Celeron® Processor: Mobile Module MMC-2 at 466 MHz and 433 MHz datasheet (Order
Number 245102)

Note: Documentation changes for IA-32 Intel(R) Architecture Software Developer’s Manual volumes 1, 2, and 3
are posted in a separate document " IA-32 Intel(R) Architecture Software Developer’s Manual Documentation
Changes". This Document has been posted to http://developer.intel.com/.

It is intended for hardware system manufacturers and software developers of applications, operating systems,
or tools. It contains S-Specs, Errata, Documentation Changes, Specification Clarifications and, Specification
Changes.

Nomenclature
S-Spec Number is a five-digit code used to identify products. Products are differentiated by their unique
characteristics, e.g., core speed, L2 cache size, package type, etc. as described in the processor identification
information table. Care should be taken to read all notes associated with each S-Spec number.

Errata are design defects or errors. Errata may cause the Mobile Intel Celeron processor or the Mobile Intel
Celeron Module’s behavior to deviate from published specifications. Hardware and software designed to be
used with any given processor must assume that all errata documented for that processor are present on all
devices unless otherwise noted.

Documentation Changes include typos, errors, or omissions from the current published specifications. These
changes will be incorporated in the next release of the specifications.

Specification Clarifications describe a specification in greater detail or further highlight a specification’s
impact to a complex design situation. These clarifications will be incorporated in the next release of the
specifications.

Specification Changes are modifications to the current published specifications for the Intel® Mobile Celeron®
processor or the Intel® Celeron® Processor Mobile Module. These changes will be incorporated in the next
release of the specifications.

http://developer.intel.com/.

Specification Update for the Mobile Intel® Celeron®
Processor at 466 MHz, 433 MHz,400 MHz, 366 MHz,

333 MHz, 300 MHz, and 266 MHz

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

1

GENERAL INFORMATION

Mobile Intel® Celeron® Processor in Micro-PGA Package

Legal Requirements
(YY = Year)

FFFFFFFF SXXXX
KP ZZZ/CCC

M C ‘YYINTEL

2D Matrix
(supplier Lot ID + SER#)

S-spec#FPO#

Package
Designator Cache

Speed

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

2

Mobile Intel® Celeron® Processor in BGA1 Package

(Supplier Lot ID +
SER#)

Legal
(YY = Year)

FFFFFFFF SXXX
KC ZZZ/CCC

M C ‘YYINTEL

2D Matrix

S-specFPO

Package
Designator Cache

Speed

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

3

Intel® Celeron® Processor Mobile Module Markings

The Product Tracking Code (PTC) determines the Intel assembly level of the module. The PTC is on the
secondary side of the module and provides the following information:

Example: PMG33302001AA

• The PTC will consist of 13 characters as identified in the above example and can be
broken down as follows:

 AABCCCDDEEEFF
• Definition: AA - Processor Module = PM

 B - Celeron® Processor Mobile Module (MMC-1) = H
Celeron® Processor Mobile Module (MMC-2) = I

 CCC - Speed Identity = 466, 400, 366, 333, 300, or 266, etc.
 DD - Cache Size = 01 (128KB)
 EEE - Notifiable Design Revision (Start at 001)
 FF - Notifiable Processor Revision (Start at AA)

• Note: For other Intel Mobile Modules, the second field (B) is defined as:
Pentium® II Processor Mobile Module (MMC-1) = D
Pentium® II Processor Mobile Module (MMC-2) = E
Pentium® II Processor with On-die Cache Mobile Module (MMC-1) = F
Pentium® II Processor with On-die Cache Mobile Module (MMC-2) = G

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

4

Intel® Celeron® Processor Mobile Module (MMC-1)

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

5

Intel® Celeron® Processor Mobile Module (MMC-2)

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

6

IDENTIFICATION INFORMATION
The Mobile Intel® Celeron® processor or the Intel® Celeron® Processor Mobile Module can be identified by the
following values:

Family1 266, 300, 333, 366 , 400, 433, 466 MHz Model 62 Brand ID
0110 0110 00h (not supported)

NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of the EAX register after the CPUID

instruction is executed with a 1 in the EAX register, and the generation field of the Device ID register accessible through
Boundary Scan.

2. The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX register after the CPUID
instruction is executed with a 1 in the EAX register, and the model field of the Device ID register accessible through
Boundary Scan.

The Mobile Intel Celeron processor and the Intel Celeron Processor Mobile Module’s second level (L2) cache
size can be determined by the following register contents:

128-Kbyte Unified L2 Cache1 41h
NOTES:
1 For the Intel® Mobile Celeron® processor and the Intel® Celeron® Processor Mobile Module, the unified L2 cache size

will be returned as one of the cache/TLB descriptors when the CPUID instruction is executed with a 2 in the EAX
register.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

7

Mobile Intel® Celeron® Processor Identification Information

S-Spec
Product

Steppings
CPU

Signature
Speed (MHz)

Core/Bus
Integrated L2
Size (Kbytes) Package Notes

SL23X mcbA0 066Ah 233/66 128 BGA 1

SL23Y mcbA0 066Ah 266/66 128 BGA 1

SL3AH mcbA0 066Ah 300/66 128 BGA 1

SL3C8 mcbA0 066Ah 333/66 128 BGA 1

SL3C7 mcbA0 066Ah 366/66 128 BGA 1

SL3DQ mcbA0 066Ah 266/66 128 BGA 2

SL3GQ mcbA0 066Ah 400/66 128 BGA 1

SL3KA mcbA0 066Ah 433/66 128 Micro-PGA 3

SL3KC mcbA0 066Ah 466/66 128 Micro-PGA 3

SL3HM mcpA0 066Ah 266/66 128 Micro-PGA 1

SL3HN mcpA0 066Ah 300/66 128 Micro-PGA 1

SL3HP mcpA0 066Ah 333/66 128 Micro-PGA 1

SL3HQ mcpA0 066Ah 366/66 128 Micro-PGA 1

SL3GR mcpA0 066Ah 400/66 128 Micro-PGA 1

SL3KB mcpA0 066Ah 433/66 128 Micro-PGA 3

SL3KD mcpA0 066Ah 466/66 128 Micro-PGA 3

NOTES:
1. VCC_CORE is specified for 1.6 V +/-135 mV for these Intel® Mobile Celeron® processors.
2. VCC_CORE is specified for 1.5 V +/-135 mV for these Mobile Intel Celeron processors.
3. VCC_CORE is specified for 1.9 V +/-135 mV for these Mobile Intel Celeron processors.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

8

Intel® Celeron® Processor Mobile Module Identification Information

PTC
Product

Steppings
CPU

Signature
Speed (MHz)

Core/Bus
Integrated L2
Size (Kbytes) Package Notes

PMH26601001AA cmmA0 066Ah 266/66 128 MMC-1 1

PMH30001001AA cmmA0 066Ah 300/66 128 MMC-1 1

PMH33301001AA cmmA0 066Ah 333/66 128 MMC-1 1

PMH36601001AA cmmA0 066Ah 366/66 128 MMC-1 1

PMH40001001AA cmmA0 066Ah 400/66 128 MMC-1 1

PMH43301001AA cmmA0 066Ah 433/66 128 MMC-1 2

PMH46601001AA cmmA0 066Ah 466/66 128 MMC-1 2

PMI26601001AA cmmA0 066Ah 266/66 128 MMC-2 1

PMI30001001AA cmmA0 066Ah 300/66 128 MMC-2 1

PMI30001001AA cmmA0 066Ah 333/66 128 MMC-2 1

PMI36601001AA cmmA0 066Ah 366/66 128 MMC-2 1

PMI40001001AA cmmA0 066Ah 400/66 128 MMC-2 1

PMI43301001AA cmmA0 066Ah 433/66 128 MMC-2 2

PMI46601001AA cmmA0 066Ah 466/66 128 MMC-2 2

NOTES:
1. Vcore voltage is 1.6V.
2. Vcore voltage is 1.9V.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

9

SUMMARY OF CHANGES
The following table indicates the Errata, Documentation Changes, Specification Clarifications, or Specification
Changes that apply to Mobile Intel® Celeron® processors. Intel intends to fix some of the errata in a future
stepping of the component, and to account for the other outstanding issues through documentation or
specification changes as noted. This table uses the following notations:

CODES USED IN SUMMARY TABLE

X: Erratum, Documentation Change, Specification Clarification or Specification
Change applies to the given processor stepping.

(No mark) or (blank box): This item is fixed in or does not apply to the given stepping.
Fix: This erratum is intended to be fixed in a future stepping of the component.
Fixed: This erratum has been previously fixed.
NoFix: There are no plans to fix this erratum.
Doc: Intel intends to update the appropriate documentation in a future revision.
PKG: This column refers to errata on the Intel® Mobile Celeron® processor or the

Intel® Celeron® Processor Mobile Module substrate.
AP: APIC related erratum.
Shaded: This item is either new or modified from the previous version of the document.

Each Specification Update item is prefixed with a capital letter to distinguish the product. The key below details
the letters that are used in Intel’s microprocessor Specification Updates:
A = Intel® Pentium® II processor
B = Mobile Intel® Pentium® II processor
C = Intel® Celeron® processor
D = Intel® Pentium® II Xeon™ processor
E = Intel® Pentium® III processor
G = Intel® Pentium® III Xeon™ processor
H = Mobile Intel® Celeron® processor at 466 MHz, 433 MHz, 400 MHz, 366 MHz, 333 MHz, 300 MHz, and 266
MHz
K = Mobile Intel® Pentium® III processor
M = Mobile Intel® Celeron® processor at 500 MHz, 450 MHz, and 400A MHz
N = Intel® Pentium® 4 processor
P = Intel® Xeon™ processor
T = Mobile Intel® Pentium® 4 processor-M
V = Mobile Intel® Celeron® processor on .13 Micron Process in Micro-FCPGA Package
W = Low Voltage Intel® Xeon™ processor

The Specification Updates for the Pentium® processor, Pentium® Pro processor, and other Intel products do not
use this convention.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

10

SUMMARY OF ERRATA

NO. mcbA0 mcpA0 cmmA0 Plans ERRATA

H1 X X X NoFix FP data operand pointer may be incorrectly
calculated after FP access which wraps 64-Kbyte
boundary in 16-bit code

H2 X X X NoFix Differences exist in debug exception reporting

H3 X X X NoFix Code fetch matching disabled debug register may
cause debug exception

H4 X X X NoFix Double ECC error on read may result in BINIT#

H5 X X X NoFix FP inexact-result exception flag may not be set

H6 X X X NoFix BTM for SMI will contain incorrect FROM EIP

H7 X X X NoFix I/O restart in SMM may fail after simultaneous MCE

H8 X X X NoFix Branch traps do not function if BTMs are also
enabled

H9 X X X NoFix Machine check exception handler may not always
execute successfully

H10 X X X NoFix MCE due to L2 parity error gives L1 MCACOD.LL

H11 X X X NoFix LBER may be corrupted after some events

H12 X X X NoFix BTMs may be corrupted during simultaneous L1
cache line replacement

H13 X X X Fix Potential early deassertion of LOCK# during split-
lock cycles

H14 X X X NoFix A20M# may be inverted after returning from SMM
and Reset

H15 X X X Fix Reporting of floating-point exception may be delayed

H16 X X X NoFix Near CALL to ESP creates unexpected EIP address

H17 X X X Fix Built-in self test always gives nonzero result

H18 X X X Fix Cache state corruption in the presence of page A/D-
bit setting and snoop traffic

H19 X X X Fix Snoop cycle generates spurious machine check
exception

H20 X X X Fix MOVD/MOVQ instruction writes to memory
prematurely

H21 X X X NoFix Memory type undefined for nonmemory operations

H22 X X X NoFix FP data operand pointer may not be zero after
power on or reset

H23 X X X NoFix MOVD following zeroing instruction can cause
incorrect result

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

11

SUMMARY OF ERRATA

NO. mcbA0 mcpA0 cmmA0 Plans ERRATA

H24 X X X NoFix Premature execution of a load operation prior to
exception handler invocation

H25 X X X NoFix Read portion of RMW instruction may execute twice

H26 X X X Fix Intervening writeback may occur during locked
transaction

H27 X X X NoFix MC2_STATUS MSR has model-specific error code
and machine check architecture error code reversed

H28 X X X NoFix Mixed cacheability of lock variables is problematic in
MP systems

H29 X Fix Thermal sensor may assert SMBALERT# incorrectly

H30 X X X NoFix MOV with debug register causes debug exception

H31 X X X NoFix Upper four PAT entries not usable with Mode B or
Mode C paging

H32 X X X Fix Incorrect memory type may be used when MTRRs
are disabled

H33 X X X Fix Misprediction in program flow may cause
unexpected instruction execution

H34 X X X NoFix Data breakpoint exception in a displacement relative
near call may corrupt eip

H35 X X X NoFix System bus ECC not functional with 2:1 ratio

H36 X X X Fix Fault on REP CMPS/SCAS operation may cause
incorrect EIP

H37 X X X NoFix RDMSR and WRMSR to invalid MSR address may
not cause GP fault

H38 X X X NoFix SYSENTER/SYSEXIT instructions can implicitly load
“null segment selector” to SS and CS registers

H39 X X X NoFix PRELOAD followed by EXTEST does not load
boundary scan data

H40 X X X NoFix Far jump to new TSS with D-bit cleared may cause
system hang

H41 X X X NoFix Incorrect chunk ordering may prevent execution of
the Machine Check Exception handler after BINIT#

H42 X X X NoFix Resume Flag may not be cleared after debug
exception

H43 X Fix Processor may return invalid parameters on
execution of the CPUID instruction

H44 X X X NoFix Internal cache protocol violation may cause system
hang

H45 X X X NoFix GP# fault on WSMSR to ROB_CR_BKUPTMPDR6

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

12

SUMMARY OF ERRATA

NO. mcbA0 mcpA0 cmmA0 Plans ERRATA

H46 X X X NoFix Machine check exception may occur due to improper
line eviction in the IFU

H47 X X X NoFix Lower Bits of SMRAM SMBASE Register Cannot Be
Written With an ITP

H48 X X X NoFix Task switch may cause wrong PTE and PDE access
bit to be set

H49 X X X NoFix Unsynchronized cross-modifying code operations
can cause unexpected instruction execution results

H50 X X X NoFix Deadlock may occur due to illegal-instruction/page-
miss combination

H51 X X X NoFix FLUSH# assertion following STPCLK# may prevent
CPU clocks from stopping

H52 X X X NoFix Floating-point exception condition may be deferred

H53 X NoFix Race conditions may exist on thermal sensor SMBus
collision detection/arbitration circuitry

H54 X X X NoFix Intermittent power-on failure due to
uninitialized processor internal nodes

H55 X X X NoFix Selector for the LTR/LLDT register may get
corrupted

H56 X X X NoFix INIT does not clear global entries in the TLB

H57 X X X NoFix VM bit will be cleared on a double fault handler

H58 X X X NoFix Memory aliasing with inconsistent A and D bits may
cause processor deadlock

H59 X X X NoFix Use of memory aliasing with inconsistent memory
type may cause system hang

H60 X X X NoFix Processor may report invalid TSS fault instead of
Double fault during mode C paging

H61 X X X NoFix Machine check exception may occur when
interleaving code between different memory types

H62 X X X NoFix Wrong ESP Register Values During a Fault in VM86
Mode

H63 X X X NoFix APIC ICR Write May Cause Interrupt Not to be Sent
When ICR Delivery Bit Pending

H64 X X X NoFix Processor Incorrectly Samples NMI Interrupt after
RESET# Deassertion When Processor APIC is
Hardware-Disabled

H65 X X X NoFix The Instruction Fetch Unit (IFU) May Fetch
Instructions Based Upon Stale CR3 Data After a
Write to CR3 Register

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

13

SUMMARY OF ERRATA

NO. mcbA0 mcpA0 cmmA0 Plans ERRATA

H66 X X X NoFix Under some complex conditions, the instructions in
the Shadow of a JMP FAR may be Unintentionally
Executed and Retired

H67 X X X NoFix Processor Does not Flag #GP on Non-zero Write to
Certain MSRs

SUMMARY OF DOCUMENTATION CHANGES

NO. mcbA0 mcpA0 cmmA0 Plans DOCUMENTATION CHANGES

H1 X X X Doc Mobile Celeron Processor CPUID Section Update

SUMMARY OF SPECIFICATION CLARIFICATIONS

NO. mcbA0 mcpA0 cmmA0 Plans SPECIFICATION CLARIFICATIONS
H1 X X Doc Shipping container maximum temperature rating for

BGA1
H2 X Doc ESD for MMC-1 and MMC-2

H3 X Doc Bulk capacitance requirements for the system
electronics

SUMMARY OF SPECIFICATION CHANGES

NO. mcbA0 mcpA0 cmmA0 Plans SPECIFICATION CHANGES
H1 X X Doc ICC,SG, ICC,QS, and ICC,DSLP maximum specifications

for BGA1 and mini-cartridge

H2 X X Doc Temperature note for thermal power specifications

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

14

ERRATA

H1. FP Data Operand Pointer May Be Incorrectly Calculated After
FP Access Which Wraps 64-Kbyte Boundary in 16-Bit Code

Problem: The FP Data Operand Pointer is the effective address of the operand associated with the last
noncontrol floating-point instruction executed by the machine. If an 80-bit floating-point access (load or store)
occurs in a 16-bit mode other than protected mode (in which case the access will produce a segment limit
violation), the memory access wraps a 64-Kbyte boundary, and the floating-point environment is subsequently
saved, the value contained in the FP Data Operand Pointer may be incorrect.

Implication: A 32-bit operating system running 16-bit floating-point code may encounter this erratum, under
the following conditions:
• The operating system is using a segment greater than 64 Kbytes in size.
• An application is running in a 16-bit mode other than protected mode.
• An 80-bit floating-point load or store which wraps the 64-Kbyte boundary is executed.
• The operating system performs a floating-point environment store (FSAVE/FNSAVE/FSTENV/FNSTENV)

after the above memory access.
• The operating system uses the value contained in the FP Data Operand Pointer.

Wrapping an 80-bit floating-point load around a segment boundary in this way is not a normal programming
practice. Intel has not currently identified any software which exhibits this behavior.

Workaround: If the FP Data Operand Pointer is used in an OS which may run 16-bit floating-point code, care
must be taken to ensure that no 80-bit floating-point accesses are wrapped around a 64-Kbyte boundary.

Status: For the steppings affected see the Summary of Changes at the
beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

15

H2. Differences Exist in Debug Exception Reporting
Problem: There exist some differences in the reporting of code and data breakpoint matches between that
specified by previous Intel processors’ specifications and the behavior of the Mobile Intel® Celeron® processor,
as described below:

Case 1: The first case is for a breakpoint set on a MOVSS or POPSS instruction, when the instruction following
it causes a debug register protection fault (DR7.gd is already set, enabling the fault). The processor reports
delayed data breakpoint matches from the MOVSS or POPSS instructions by setting the matching DR6.bi bits,
along with the debug register protection fault (DR6.bd). If additional breakpoint faults are matched during the
call of the debug fault handler, the processor sets the breakpoint match bits (DR6.bi) to reflect the breakpoints
matched by both the MOVSS or POPSS breakpoint and the debug fault handler call. The Mobile Intel®
Celeron® processor only sets DR6.bd in either situation, and does not set any of the DR6.bi bits.

Case 2: In the second breakpoint reporting failure case, if a MOVSS or POPSS instruction with a data
breakpoint is followed by a store to memory which:

a) crosses a 4-Kbyte page boundary,

OR

b) causes the page table Access or Dirty (A/D) bits to be modified,

the breakpoint information for the MOVSS or POPSS will be lost. Previous processors retain this information
under these boundary conditions.

Case 3: If they occur after a MOVSS or POPSS instruction, the INTn, INTO, and INT3 instructions zero the
DR6.bi bits (bits B0 through B3), clearing pending breakpoint information, unlike previous processors.

Case 4: If a data breakpoint and an SMI (System Management Interrupt) occur simultaneously, the SMI will be
serviced via a call to the SMM handler, and the pending breakpoint will be lost.

Case 5: When an instruction which accesses a debug register is executed, and a breakpoint is encountered on
the instruction, the breakpoint is reported twice.

Case 6: Unlike previous versions of Intel Architecture processors, Mobile Intel® Celeron® processors will not
set the Bi bits for a matching disabled breakpoint unless at least one other breakpoint is enabled.

Implication: When debugging or when developing debuggers for a Mobile Intel® Celeron® processor-based
system, this behavior should be noted. Normal usage of the MOVSS or POPSS instructions (i.e., following them
with a MOV ESP) will not exhibit the behavior of cases 1-3. Debugging in conjunction with SMM will be limited
by case 4.

Workaround: Following MOVSS and POPSS instructions with a MOV ESP instruction when using
breakpoints will avoid the first three cases of this erratum. No workaround has been identified for cases 4, 5, or
6.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

16

H3. Code Fetch Matching Disabled Debug Register May Cause
Debug Exception

Problem: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks, respectively. If one
of these bits is set, a breakpoint is enabled, corresponding to the addresses in the debug registers DR0 - DR3.
If at least one of these breakpoints is enabled, any of these registers are disabled (e.g., Ln and Gn are 0), and
RWn for the disabled register is 00 (indicating a breakpoint on instruction execution), normally an instruction
fetch will not cause an instruction-breakpoint fault based on a match with the address in the disabled register(s).
However, if the address in a disabled register matches the address of a code fetch which also results in a page
fault, an instruction-breakpoint fault will occur.

Implication: While debugging software, extraneous instruction-breakpoint faults may be encountered if
breakpoint registers are not cleared when they are disabled. Debug software which does not implement a code
breakpoint handler will fail, if this occurs. If a handler is present, the fault will be serviced. Mixing data and code
may exacerbate this problem by allowing disabled data breakpoint registers to break on an instruction fetch.

Workaround: The debug handler should clear breakpoint registers before they become disabled.

Status: For the steppings affected see the Summary of Changes at the
beginning of this section.

H4. Double ECC Error on Read May Result in BINIT#
Problem: For this erratum to occur, the following conditions must be met:
• Machine Check Exceptions (MCEs) must be enabled.
• A dataless transaction (such as a write invalidate) must be occurring simultaneously with a transaction

which returns data (a normal read).
• The read data must contain a double-bit uncorrectable ECC error.

If these conditions are met, the Mobile Intel Celeron processor will not be able to determine which transaction
was erroneous, and instead of generating an MCE, it will generate a BINIT#.

Implication: The bus will be reinitialized in this case. However, since a double-bit uncorrectable ECC error
occurred on the read, the MCE handler (which is normally reached on a double-bit uncorrectable ECC error for
a read) would most likely cause the same BINIT# event.

Workaround: Though the ability to drive BINIT# can be disabled in the Mobile Intel Celeron processor, which
would prevent the effects of this erratum, overall system behavior would not improve, since the error which
would normally cause a BINIT# would instead cause the machine to shut down. No other workaround has been
identified.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

17

H5. FP Inexact-Result Exception Flag May Not Be Set
Problem: When the result of a floating-point operation is not exactly representable in the destination format
(1/3 in binary form, for example), an inexact-result (precision) exception occurs. When this occurs, the PE bit
(bit 5 of the FPU status word) is normally set by the processor. Under certain rare conditions, this bit may not be
set when this rounding occurs. However, other actions taken by the processor (invoking the software exception
handler if the exception is unmasked) are not affected. This erratum can only occur if the floating-point
operation which causes the precision exception is immediately followed by one of the following instructions:

• FST m32real
• FST m64real

• FSTP m32real
• FSTP m64real
• FSTP m80real

• FIST m16int
• FIST m32int

• FISTP m16int
• FISTP m32int
• FISTP m64int

Note that even if this combination of instructions is encountered, there is also a dependency on the internal
pipelining and execution state of both instructions in the processor.

Implication: Inexact-result exceptions are commonly masked or ignored by applications, as it happens
frequently, and produces a rounded result acceptable to most applications. The PE bit of the FPU status word
may not always be set upon receiving an inexact-result exception. Thus, if these exceptions are unmasked, a
floating-point error exception handler may not recognize that a precision exception occurred. Note that this is a
“sticky” bit, e.g., once set by an inexact-result condition, it remains set until cleared by software.

Workaround: This condition can be avoided by inserting two NOP instructions between the two floating-point
instructions.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H6. BTM for SMI Will Contain Incorrect FROM EIP
Problem: A system management interrupt (SMI) will produce a Branch Trace Message (BTM), if BTMs are
enabled. However, the FROM EIP field of the BTM (used to determine the address of the instruction which was
being executed when the SMI was serviced) will not have been updated for the SMI, so the field will report the
same FROM EIP as the previous BTM.

Implication: A BTM which is issued for an SMI will not contain the correct FROM EIP, limiting the usefulness
of BTMs for debugging software in conjunction with System Management Mode (SMM).

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

18

H7. I/O Restart in SMM May Fail After Simultaneous MCE
Problem: If an I/O instruction (IN, INS, REP INS, OUT, OUTS, or REP OUTS) is being executed, and if the
data for this instruction becomes corrupted, the Intel Mobile Celeron processor will signal a machine check
exception (MCE). If the instruction is directed at a device which is powered down, the processor may also
receive an assertion of SMI#. Since MCEs have higher priority, the processor will call the MCE handler, and the
SMI# assertion will remain pending. However, upon attempting to execute the first instruction of the MCE
handler, the SMI# will be recognized and the processor will attempt to execute the SMM handler. If the SMM
handler is completed successfully, it will attempt to restart the I/O instruction, but will not have the correct
machine state, due to the call to the MCE handler.

Implication: A simultaneous MCE and SMI# assertion may occur for one of the I/O instructions above. The
SMM handler may attempt to restart such an I/O instruction, but will have corrupted state due to the MCE
handler call, leading to failure of the restart and shutdown of the processor.

Workaround: If a system implementation must support both SMM and MCEs, the first thing the SMM handler
code (when an I/O restart is to be performed) should do is check for a pending MCE. If there is an MCE
pending, the SMM handler should immediately exit via an RSM instruction and allow the machine check
exception handler to execute. If there is not, the SMM handler may proceed with its normal operation.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H8. Branch Traps Do Not Function if BTMs Are Also Enabled
Problem: If branch traps or branch trace messages (BTMs) are enabled alone, both function as expected.
However, if both are enabled, only the BTMs will function, and the branch traps will be ignored.

Implication: The branch traps and branch trace message debugging features cannot be used together.

Workaround: If branch trap functionality is desired, BTMs must be disabled.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H9. Machine Check Exception Handler May Not Always Execute
Successfully

Problem: An asynchronous machine check exception (MCE), such as a BINIT# event, which occurs during an
access that splits a 4-Kbyte page boundary may leave some internal registers in an indeterminate state. Thus,
MCE handler code may not always run successfully if an asynchronous MCE has occurred previously.

Implication: An MCE may not always result in the successful execution of the MCE handler. However,
asynchronous MCEs usually occur upon detection of a catastrophic system condition that would also hang the
processor. Leaving MCEs disabled will result in the condition which caused the asynchronous MCE instead
causing the processor to enter shutdown. Therefore, leaving MCEs disabled may not improve overall system
behavior.

Workaround: No workaround which would guarantee successful MCE handler execution under this condition
has been identified.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

19

H10. MCE Due to L2 Parity Error Gives L1 MCACOD.LL
Problem: If a Cache Reply Parity (CRP) error, Cache Address Parity (CAP) error, or Cache Synchronous
Error (CSER) occurs on an access to the Mobile Intel Celeron processor’s L2 cache, the resulting Machine
Check Architectural Error Code (MCACOD) will be logged with ‘01’ in the LL field. This value indicates an L1
cache error; the value should be ‘10’, indicating an L2 cache error. Note that L2 ECC errors have the correct
value of ‘10’ logged.

Implication: An L2 cache access error, other than an ECC error, will be improperly logged as an L1 cache
error in MCACOD.LL.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H11. LBER May Be Corrupted After Some Events
Problem: The last branch record (LBR) and the last branch before exception record (LBER) can be used to
determine the source and destination information for previous branches or exceptions. The LBR contains the
source and destination addresses for the last branch or exception, and the LBER contains similar information
for the last branch taken before the last exception. This information is typically used to determine the location of
a branch which leads to execution of code which causes an exception. However, after a catastrophic bus
condition which results in an assertion of BINIT# and the reinitialization of the buses, the value in the LBER may
be corrupted. Also, after either a CALL which results in a fault or a software interrupt, the LBER and LBR will be
updated to the same value, when the LBER should not have been updated.

Implication: The LBER and LBR registers are used only for debugging purposes. When this erratum occurs,
the LBER will not contain reliable address information. The value of LBER should be used with caution when
debugging branching code; if the values in the LBR and LBER are the same, then the LBER value is incorrect.
Also, the value in the LBER should not be relied upon after a BINIT# event.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H12. BTMs May Be Corrupted During Simultaneous L1 Cache Line
Replacement

Problem: When Branch Trace Messages (BTMs) are enabled and such a message is generated, the BTM
may be corrupted when issued to the bus by the L1 cache if a new line of data is brought into the L1 data cache
simultaneously. Though the new line being stored in the L1 cache is stored correctly, and no corruption occurs
in the data, the information in the BTM may be incorrect due to the internal collision of the data line and the
BTM.

Implication: Although BTMs may not be entirely reliable due to this erratum, the conditions necessary for this
boundary condition to occur have only been exhibited during focused simulation testing. Intel has currently not
observed this erratum in a system level validation environment.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

20

H13. Potential Early Deassertion of LOCK# During Split-Lock
Cycles

Problem: During a split-lock cycle there are four bus transactions: 1st ADS# (a partial read), 2nd ADS# (a
partial read), 3rd ADS# (a partial write), and the 4th ADS# (a partial write). Due to this erratum, LOCK# may
deassert one clock after the 4th ADS# of the split-lock cycle instead of after the 4th RS# assertion
corresponding to the 4th ADS# has been sampled. The following sequence of events are required for this
erratum to occur:

1. A lock cycle occurs (split or nonsplit).
2. Five more bus transactions (assertion of ADS#) occur.
3. A split-lock cycle occurs and BNR# toggles after the 3rd ADS# (partial write) of the split-lock cycle. This in

turn delays the assertion of the 4th ADS# of the split-lock cycle. BNR# toggling at this time could most likely
happen when the bus is set for an IOQ depth of 2.

When all of these events occur, LOCK# will be deasserted in the next clock after the 4th ADS# of the split-lock
cycle.

Implication: This may affect chipset logic which monitors the behavior of LOCK# deassertion.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H14. A20M# May Be Inverted After Returning From SMM and
Reset

Problem: This erratum is seen when software causes the following events to occur:
1. The assertion of A20M# in real address mode.
2. After entering the 1-Mbyte address wrap-around mode caused by the assertion of A20M#, there is an

assertion of SMI# intended to cause a Reset or remove power to the processor. Once in the SMM handler,
software saves the SMM state save map to an area of nonvolatile memory from which it can be restored at
some point in the future. Then software asserts RESET# or removes power to the processor.

3. After exiting Reset or completion of power-on, software asserts SMI# again. Once in the SMM handler, it
then retrieves the old SMM state save map which was saved in event 2 above and copies it into the current
SMM state save map. Software then asserts A20M# and executes the RSM instruction. After exiting the
SMM handler, the polarity of A20M# is inverted.

Implication: If this erratum occurs, A20M# will behave with a polarity opposite from what is expected (e.g.,
the 1-Mbyte address wrap-around mode is enabled when A20M# is deasserted, and does not occur when
A20M# is asserted).

Workaround: Software should save the A20M# signal state in nonvolatile memory before an assertion of
RESET# or a power down condition. After coming out of Reset or at power on, SMI# should be asserted again.
During the restoration of the old SMM state save map described in event 3 above, the entire map should be
restored, except for bit 5 of the byte at offset 7F18h. This bit should retain the value assigned to it when the
SMM state save map was created in event 3. The SMM handler should then restore the original value of the
A20M# signal.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

21

H15. Reporting of Floating-Point Exception May Be Delayed
Problem: The Mobile Intel Celeron processor normally reports a floating-point exception for an instruction
when the next floating-point or MMX™ technology instruction is executed. The assertion of FERR# and/or the
INT 16 interrupt corresponding to the exception may be delayed until the floating-point or MMX technology
instruction after the one which is expected to trigger the exception, if the following conditions are met:
1. A floating-point instruction causes an exception.
2. Before another floating-point or MMX technology instruction, any one of the following occurs:

a. A subsequent data access occurs to a page which has not been marked as accessed
b. Data is referenced which crosses a page boundary, or
c. A possible page-fault condition is detected which, when resolved, completes without faulting.

3. The instruction causing event 2 above is followed by a MOVQ or MOVD store instruction.

Implication: This erratum only affects software which operates with floating-point exceptions unmasked.
Software which requires floating-point exceptions to be visible on the next floating-point or MMX technology
instruction, and which uses floating-point calculations on data which is then used for MMX technology
instructions, may see a delay in the reporting of a floating-point instruction exception in some cases. Note that
mixing floating-point and MMX technology instructions in this way is not recommended.

Workaround: Inserting a WAIT or FWAIT instruction (or reading the floating-point status register) between
the floating-point instruction and the MOVQ or MOVD instruction will give the expected results. This is already
the recommended practice for software.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H16. Near CALL to ESP Creates Unexpected EIP Address
Problem: As documented, the CALL instruction saves procedure linking information in the procedure stack
and jumps to the called procedure specified with the destination (target) operand. The target operand specifies
the address of the first instruction in the called procedure. This operand can be an immediate value, a general
purpose register, or a memory location. When accessing an absolute address indirectly using the stack pointer
(ESP) as a base register, the base value used is the value in the ESP register before the instruction executes.
However, when accessing an absolute address directly using ESP as the base register, the base value used is
the value of ESP after the return value is pushed on the stack, not the value in the ESP register before the
instruction executed.

Implication: Due to this erratum, the processor may transfer control to an unintended address. Results are
unpredictable, depending on the particular application, and can range from no effect to the unexpected
termination of the application due to an exception. Intel has observed this erratum only in a focused testing
environment. Intel has not observed any commercially available operating system, application, or compiler that
makes use of or generates this instruction.

Workaround: If the other seven general purpose registers are unavailable for use, and it is necessary to do a
CALL via the ESP register, first push ESP onto the stack, then perform an indirect call using ESP (e.g., CALL
[ESP]). The saved version of ESP should be popped off the stack after the call returns.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

22

H17. Built-in Self Test Always Gives Nonzero Result
Problem: The Built-in Self Test (BIST) of the Mobile Intel Celeron processor does not give a zero result to
indicate a passing test. Regardless of pass or fail status, bit 6 of the BIST result in the EAX register after
running BIST is set.

Implication: Software which relies on a zero result to indicate a passing BIST will indicate BIST failure.

Workaround: Mask bit 6 of the BIST result register when analyzing BIST results.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H18. Cache State Corruption in the Presence of Page A/D-bit
Setting and Snoop Traffic

Problem: If an operating system uses the Page Access and/or Dirty bit feature implemented in the Intel
architecture and there is a significant amount of snoop traffic on the bus, while the processor is setting the
Access and/or Dirty bit the processor may inappropriately change a single L1 cache line to the modified state.

Implication: The occurrence of this erratum may result in cache incoherency, which may cause parity errors,
data corruption (with no parity error), unexpected application or operating system termination, or system hangs.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H19. Snoop Cycle Generates Spurious Machine Check Exception
Problem: The processor may incorrectly generate a Machine Check Exception (MCE) when it processes a
snoop access that does not hit the L1 data cache. Due to an internal logic error, this type of snoop cycle may
still check data parity on undriven data lines. The processor generates a spurious machine check exception as
a result of this unnecessary parity check.

Implication: A spurious machine check exception may result in an unexpected system halt if Machine Check
Exception reporting is enabled in the operating system.

Workaround: It is possible for BIOS code to contain a workaround for this erratum. This workaround would fix
the erratum; however, the data parity error will still be reported.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H20. MOVD/MOVQ Instruction Writes to Memory Prematurely
Problem: When an instruction encounters a fault, the faulting instruction should not modify any CPU or
system state. However, when the MMX™ technology store instructions MOVD and MOVQ encounter any of the
following events, it is possible for the store to be committed to memory even though it should be canceled:
1. If CR0.EM = 1 (Emulation bit), then the store could happen prior to the triggered invalid opcode exception.
2. If the floating-point Top-of-Stack (FP TOS) is not zero, then the store could happen prior to executing the

processor assist routine that sets the FP TOS to zero.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

23

3. If there is an unmasked floating-point exception pending, then the store could happen prior to the triggered
unmasked floating-point exception.

4. If CR0.TS = 1 (Task Switched bit), then the store could happen prior to the triggered Device Not Available
(DNA) exception.

If the MOVD/MOVQ instruction is restarted after handling any of the above events, then the store will be
performed again, overwriting with the expected data. The instruction will not be restarted after event 1. The
instruction will definitely be restarted after events 2 and 4. The instruction may or may not be restarted after
event 3, depending on the specific exception handler.

Implication: This erratum causes unpredictable behavior in an application if MOVD/MOVQ instructions are
used to manipulate semaphores for multiprocessor synchronization, or if these MMX instructions are used to
write to uncacheable memory or memory mapped I/O that has side effects, e.g., graphics devices. This erratum
is completely transparent to all applications that do not have these characteristics. When each of the above
conditions are analyzed:
1. Setting the CR0.EM bit forces all floating-point/MMX instructions to be handled by software emulation. The

MOVD/MOVQ instruction, which is an MMX instruction, would be considered an invalid instruction.
Operating systems typically terminates the application after getting the expected invalid opcode fault.

2. The FP TOS not equal to 0 case only occurs when the MOVD/MOVQ store is the first MMX instruction in an
MMX technology routine and the previous floating-point routine did not clean up the floating-point states
properly when it exited. Floating-point routines commonly leave TOS to 0 prior to exiting. For a store to be
executed as the first MMX instruction in an MMX technology routine following a floating-point routine, the
software would be implementing instruction level intermixing of floating-point and MMX instructions. Intel
does not recommend this practice.

3. The unmasked floating-point exception case only occurs if the store is the first MMX technology instruction
in an MMX technology routine and the previous floating-point routine exited with an unmasked floating-point
exception pending. Again, for a store to be executed as the first MMX instruction in an MMX technology
routine following a floating-point routine, the software would be implementing instruction level intermixing of
floating-point and MMX instructions. Intel does not recommend this practice.

4. Device Not Available (DNA) exceptions occur naturally when a task switch is made between two tasks that
use either floating-point instructions and/or MMX instructions. For this erratum, in the event of the DNA
exception, data from the prior task may be temporarily stored to the present task’s program state.

Workaround: Do not use MMX instructions to manipulate semaphores for multiprocessor synchronization. Do
not use MOVD/MOVQ instructions to write directly to I/O devices if doing so triggers user visible side effects. An
OS can prevent old data from being stored to a new task’s program state by cleansing the FPU explicitly after
every task switch. Follow Intel’s recommended programming paradigms in the Intel Architecture Optimization
Manual for writing MMX technology programs. Specifically, do not mix floating-point and MMX instructions.
When transitioning to new a MMX technology routine, begin with an instruction that does not depend on the
prior state of either the MMX technology registers or the floating-point registers, such as a load or PXOR mm0,
mm0. Be sure that the FP TOS is clear before using MMX instructions.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H21. Memory Type Undefined for Nonmemory Operations
Problem: The Memory Type field for nonmemory transactions such as I/O and Special Cycles are undefined.
Although the Memory Type attribute for nonmemory operations logically should (and usually does) manifest
itself as UC, this feature is not designed into the implementation and is therefore inconsistent.

Implication: Bus agents may decode a non-UC memory type for nonmemory bus transactions.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

24

Workaround: Bus agents must consider transaction type to determine the validity of the Memory Type field
for a transaction.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H22. FP Data Operand Pointer May Not Be Zero After Power On or
Reset

Problem: The FP Data Operand Pointer, as specified, should be reset to zero upon power on or Reset by the
processor. Due to this erratum, the FP Data Operand Pointer may be nonzero after power on or Reset.

Implication: Software which uses the FP Data Operand Pointer and count on its value being zero after power
on or Reset without first executing an FINIT/FNINIT instruction will use an incorrect value, resulting on incorrect
behavior of the software.

Workaround: Software should follow the recommendation in Section 8.2 of the Intel Architecture Software
Developer’s Manual, Volume 3: System Programming Guide (Order Number 243192). This recommendation
states that if the FPU will be used, software-initialization code should execute an FINIT/FNINIT instruction
following a hardware reset. This will correctly clear the FP Data Operand Pointer to zero.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

25

H23. MOVD Following Zeroing Instruction Can Cause Incorrect
Result

Problem: An incorrect result may be calculated after the following circumstances occur:
1. A register has been zeroed with either a SUB reg, reg instruction or an XOR reg, reg instruction
2. A value is moved with sign extension into the same register’s lower 16 bits; or a signed integer multiply is

performed to the same register’s lower 16 bits
3. This register is then copied to an MMX™ technology register using the MOVD instruction prior to any other

operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX technology register. Only the MMX
technology register is affected by this erratum.

The erratum only occurs when the 3 following steps occur in the order shown. The erratum may occur with up to
40 intervening instructions that do not modify the sign-extended value between steps 2 and 3.
1. XOR EAX, EAX

or SUB EAX, EAX
2. MOVSX AX, BL

or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX, BX (opcode 0F AF /r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX, 16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8 (opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw) or IMUL AX, 1024 (opcode 69 /r iw)
or CBW

3. MOVD MM0, EAX

Note that the values for immediate byte/words are merely representative (i.e., 8, 16, 1024) and that any value in
the range for the size may be affected. Also, note that this erratum may occur with “EAX” replaced with any 32-
bit general purpose register, and “AX” with the corresponding 16-bit version of that replacement. “BL” or “BX”
can be replaced with any 8-bit or 16-bit general purpose register. The CBW and IMUL (opcode F6 /5)
instructions are specific to the EAX register only.

In the example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the MOVSX, IMUL and CBW
instructions listed should modify only bits 15:8 of EAX by sign extension, bits 31:16 of EAX should always
contain 0. This implies that when MOVD copies EAX to MM0, bits 31:16 of MM0 should also be 0. Under certain
scenarios, bits 31:16 of MM0 are not 0, but are replicas of bit 15 (the 16th bit) of AX. This is noticeable when the
value in AX after the MOVSX, IMUL or CBW instruction is negative, i.e., bit 15 of AX is a 1.

When AX is positive (bit 15 of AX is a 0), MOVD will always produce the correct answer. If AX is negative (bit 15
of AX is a 1), MOVD may produce the right answer or the wrong answer depending on the point in time when
the MOVD instruction is executed in relation to the MOVSX, IMUL or CBW instruction.

Implication: The effect of incorrect execution will vary from unnoticeable, due to the code sequence
discarding the incorrect bits, to an application failure. If the MMX technology-enabled application in which
MOVD is used to manipulate pixels, it is possible for one or more pixels to exhibit the wrong color or position
momentarily. It is also possible for a computational application that uses the MOVD instruction in the manner
described above to produce incorrect data. Note that this data may cause an unexpected page fault or general
protection fault.

Workaround: There are two possible workarounds for this erratum:

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

26

1. Rather than using the MOVSX-MOVD or CBW-MOVD pairing to handle one variable at a time, use the sign
extension capabilities (PSRAW, etc.) within MMX technology for operating on multiple variables. This would
result in higher performance as well.

2. Insert another operation that modifies or copies the sign-extended value between the MOVSX/IMUL/CBW
instruction and the MOVD instruction as in the example below:

 XOR EAX, EAX (or SUB EAX, EAX)
 MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)
 *MOV EAX, EAX
 MOVD MM0, EAX

*Note: MOV EAX, EAX is used here as it is fairly generic. Again, EAX can be any 32-bit register.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H24. Premature Execution of a Load Operation Prior to Exception
Handler Invocation

Problem: This erratum can occur with any of the following situations:
1. If an instruction that performs a memory load causes a code segment limit violation
2. If a waiting floating-point instruction or MMX™ instruction that performs a memory load has a floating-point

exception pending
3. If an MMX instruction that performs a memory load and has either CR0.EM =1 (Emulation bit set), or a

floating-point Top-of-Stack (FP TOS) not equal to 0, or a DNA exception pending

If any of the above circumstances, occur it is possible that the load portion of the instruction will have executed
before the exception handler is entered.

Implication: In normal code execution where the target of the load operation is to write back memory there is
no impact from the load being prematurely executed, nor from the restart and subsequent re-execution of that
instruction by the exception handler. If the target of the load is to uncached memory that has a system side-
effect, restarting the instruction may cause unexpected system behavior due to the repetition of the side-effect.

Workaround: Code which performs loads from memory that has side-effects can effectively workaround this
behavior by using simple integer-based load instructions when accessing side-effect memory and by ensuring
that all code is written such that a code segment limit violation cannot occur as a part of reading from side-effect
memory.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H25. Read Portion of RMW Instruction May Execute Twice
Problem: When the Mobile Intel Celeron processor executes a read-modify-write (RMW) arithmetic
instruction, with memory as the destination, it is possible for a page fault to occur during the execution of the
store on the memory operand after the read operation has completed but before the write operation completes.

If the memory targeted for the instruction is UC (uncached), memory will observe the occurrence of the initial
load before the page fault handler and again if the instruction is restarted.

Implication: This erratum has no effect if the memory targeted for the RMW instruction has no side-effects. If,
however, the load targets a memory region that has side-effects, multiple occurrences of the initial load may
lead to unpredictable system behavior.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

27

Workaround: Hardware and software developers who write device drivers for custom hardware that may
have a side-effect style of design should use simple loads and simple stores to transfer data to and from the
device. Then, the memory location will simply be read twice with no additional implications.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H26. Intervening Writeback May Occur During Locked Transaction
Problem: During a transaction which has the LOCK# signal asserted (e.g., a locked transaction), there is a
potential for an explicit writeback caused by a previous transaction to complete while the bus is locked. The
explicit writeback will only be issued by the processor which has locked the bus, and the lock signal will not be
deasserted until the locked transaction completes, but the atomicity of a lock may be compromised by this
erratum. Note that the explicit writeback is an expected cycle, and no memory ordering violations will occur.
This erratum is, however, a violation of the bus lock protocol.

Implication: A chipset or third-party agent (TPA) which tracks bus transactions in such a way that locked
transactions may only consist of a read-write or read-read-write-write locked sequence, with no transactions
intervening, may lose synchronization of state due to the intervening explicit writeback. Systems using chipsets
or TPAs which can accept the intervening transaction will not be affected.

Workaround: The bus tracking logic of all devices on the system bus should allow for the occurrence of an
intervening transaction during a locked transaction.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H27. MC2_STATUS MSR Has Model-Specific Error Code and
Machine Check Architecture Error Code Reversed

Problem: The Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
documents that for the MCi_STATUS MSR, bits 15:0 contain the MCA (machine-check architecture) error code
field and bits 31:16 contain the model-specific error code field. However, for the MC2_STATUS MSR, these bits
have been reversed. For the MC2_STATUS MSR, bits 15:0 contain the model-specific error code field and bits
31:16 contain the MCA error code field.

Implication: A machine check error may be decoded incorrectly if this erratum on the MC2_STATUS MSR is
not taken into account.

Workaround: When decoding the MC2_STATUS MSR, reverse the two error fields.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

28

H28. Mixed Cacheability of Lock Variables Is Problematic in MP
Systems

Problem: This errata only affects multiprocessor systems where a lock variable address is marked cacheable
in one processor and uncacheable in any others. The processors which have it marked uncacheable may stall
indefinitely when accessing the lock variable. The stall is only encountered if:
• One processor has the lock variable cached, and is attempting to execute a cache lock.
• The processor that has that address cached has it cached in its L2 only.

Other processors, meanwhile, issue back to back accesses to that same address on the bus.

Implication: MP systems where all processors either use cache locks or consistent locks to uncacheable
space will not encounter this problem. If, however, a lock variable’s cacheability varies in different processors,
and several processors are all attempting to perform the lock simultaneously, an indefinite stall may be
experienced by the processors which have it marked uncacheable in locking the variable (if the conditions
above are satisfied). Intel has only encountered this problem in focus testing with artificially generated external
events. Intel has not currently identified any commercial software which exhibits this problem.

Workaround: Follow a homogenous model for the memory type range registers (MTRRs), ensuring that all
processors have the same cacheability attributes for each region of memory; do not use locks whose memory
type is cacheable on one processor, and uncacheable on others. Avoid page table aliasing, which may produce
a nonhomogenous memory model.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H29. Thermal Sensor May Assert SMBALERT# Incorrectly
Problem: The Intel Celeron Processor Mobile Module has a thermal sensor that monitors the processor core’s
temperature. Please note that desktop systems could have a similar thermal device. The thermal sensor asserts
SMBALERT# if the processor temperature exceeds the temperature limits set in the Alarm Threshold Registers
(THIGH, TLOW). It also sets the corresponding Status Register bits to identify the cause of the interrupt. Figure 1
gives one example of the how the SMBALERT# signal could be used in a system.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

29

South
Bridge

3

SMBCLK
SMBDATA

SMBALERT#

THRM# Micro-Controller

SMBALERT#

SMBCLK

SMBDATA

SMBCLK

SMBDATA

Thermal
Sensor

Processor Core

L2 Cache

SMBALERT#

Figure 1. An Example of Microcontroller Driven Thermal Management

Implication: There is no system impact from this erratum if temperature polling is used for processor thermal
management. If the SMABLERT# interrupt is employed to manage processor thermal sensing, then servicing
the false interrupt may result in premature system action depending on the software and hardware
implementations used. The rate of the false interrupts is less than the auto-convert rate of the thermal sensor.

Workaround: Three different (mutually exclusive) workarounds are possible:
1. Before servicing an interrupt from the thermal sensor, read and compare the processor thermal reading

with the threshold limits (THIGH or TLOW). Figures 2 and 3 provide basic flowcharts for the implementation
of this workaround in an interrupt driven system.

2. If the firmware implemented polls the Status Register only, then before taking any action, re-read the
temperature register and do a comparison with the alarm threshold limits (THIGH or TLOW) to determine if
the value is actually still within the temperature window.

3. Use a temperature polling scheme to monitor the processor temperature.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

30

Figure 2. Workaround Flowchart: SMBALERT#-Driven System

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

31

Figure 3. Workaround Flowchart: SMI#-Driven System

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

32

H30. MOV With Debug Register Causes Debug Exception
Problem: When in V86 mode, if a MOV instruction is executed on debug registers, a general-protection
exception (#GP) should be generated, as documented in the Intel Architecture Software Developer's Manual,
Volume 3: System Programming Guide, Section 15.2. However, in the case when the general detect enable flag
(GD) bit is set, the observed behavior is that a debug exception (#DB) is generated instead.

Implication: With debug-register protection enabled (e.g., the GD bit set), when attempting to execute a MOV
on debug registers in V86 mode, a debug exception will be generated instead of the expected general-
protection fault.

Workaround: In general, operating systems do not set the GD bit when they are in V86 mode. The GD bit is
generally set and used by debuggers. The debug exception handler should check that the exception did not
occur in V86 mode before continuing. If the exception did occur in V86 mode, the exception may be directed to
the general-protection exception handler.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H31. Upper Four PAT Entries Not Usable With Mode B or Mode C
Paging

Problem: The Page Attribute Table (PAT) contains eight entries, which must all be initialized and considered
when setting up memory types for the Mobile Intel Celeron processor. However, in Mode B or Mode C paging,
the upper four entries do not function correctly for 4-Kbyte pages. Specifically, bit seven of page table entries
that translate addresses to 4-Kbyte pages should be used as the upper bit of a three-bit index to determine the
PAT entry that specifies the memory type for the page. When Mode B (CR4.PSE = 1) and/or Mode C
(CR4.PAE) are enabled, the processor forces this bit to zero when determining the memory type regardless of
the value in the page table entry. The upper four entries of the PAT function correctly for 2-Mbyte and 4-Mbyte
large pages (specified by bit 12 of the page directory entry for those translations).

Implication: Only the lower four PAT entries are useful for 4KB translations when Mode B or C paging is
used. In Mode A paging (4-Kbyte pages only), all eight entries may be used. All eight entries may be used for
large pages in Mode B or C paging.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

33

H32. Incorrect Memory Type May be Used When MTRRs Are
Disabled

Problem: If the Memory Type Range Registers (MTRRs) are disabled without setting the CR0.CD bit to
disable caching, and the Page Attribute Table (PAT) entries are left in their default setting, which includes
UC- memory type (PCD = 1, PWT = 0; see the Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide, for details), data for entries set to UC- will be cached as if the memory type were
writeback (WB). Also, if the page tables are set to a memory type other than UC-, then the effective memory
type used will be that specified by the page tables and PAT. Any regions of memory normally forced to UC by
the MTRRs (such as the VGA video region) may now be incorrectly cached and speculatively accessed.

Even if the CR0.CD bit is correctly set when the MTRRs are disabled and the PAT is left in its default state, then
retries and out of order retirement of UC accesses may occur, contrary to the strong ordering expected for
these transactions.
Implication: The occurrence of this erratum may result in the use of incorrect data and unpredictable
processor behavior when running with the MTRRs disabled. Interaction between the mouse, cursor, and VGA
video display leading to video corruption may occur as a symptom of this erratum as well.

Workaround: Ensure that when the MTRRs are disabled, the CR0.CD bit is set to disable caching. This
recommendation is described in the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. If it is necessary to disable the MTRRs, first clear the PAT register before setting the
CR0.CD bit, flushing the caches, and disabling the MTRRs to ensure that UC memory type is always returned
and strong ordering is maintained.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H33. Misprediction in Program Flow May Cause Unexpected
Instruction Execution

Problem: To optimize performance through dynamic execution technology, the P6 architecture has the ability
to predict program flow. In the event of a misprediction, the processor will normally clear the incorrect
prediction, adjust the EIP to the correct location, and flush out any instructions it may have fetched from the
misprediction. In circumstances where a branch misprediction occurs, the correct target of the branch has
already been opportunistically fetched into the streaming buffers, and the L2 cycle caused by the evicted cache
line is retried by the L2 cache, the processor may fail to flush out the retirement unit before the speculative
program flow is committed to a permanent state.

Implication: The results of this erratum may range from no effect to unpredictable application or OS failure.
Manifestations of this failure may result in:
• Unexpected values in EIP
• Faults or traps (e.g., page faults) on instructions that do not normally cause faults
• Faults in the middle of instructions
• Unexplained values in registers/memory at the correct EIP

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

34

H34. Data Breakpoint Exception in a Displacement Relative Near
Call May Corrupt EIP

Problem: If a misaligned data breakpoint is programmed to the same cache line as the memory
location where the stack push of a near call is performed and any data breakpoints are enabled,
the processor will update the stack and ESP appropriately, but may skip the code at the destination
of the call. Hence, program execution will continue with the next instruction immediately following
the call, instead of the target of the call.
Implication: The failure mechanism for this erratum is that the call would not be taken; therefore,
instructions in the called subroutine would not be executed. As a result, any code relying on the
execution of the subroutine will behave unpredictably.
Workaround: Whether enabled or not, do not program a misaligned data breakpoint to the same
cache line on the stack where the push for the near call is performed.

Status: For the stepping affected see the Summary of Changes at the beginning of this section.

H35. System Bus ECC Not Functional With 2:1 Ratio
Problem: If a processor is underclocked at a core frequency to system bus frequency ratio of 2:1 and system
bus ECC is enabled, the system bus ECC detection and correction will negatively affect internal timing
dependencies.
Implication: If system bus ECC is enabled, and the processor is underclocked at a 2:1 ratio, the system may
behave unpredictably due to these timing dependencies.

Workaround: All bus agents that support system bus ECC must disable it when a 2:1 ratio is used.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H36. Fault on REP CMPS/SCAS Operation May Cause Incorrect
EIP

Problem: If either a General Protection Fault, Alignment Check Fault or Machine Check Exception occur
during the first iteration of a REP CMPS or a REP SCAS instruction, an incorrect EIP may be pushed onto the
stack of the event handler if all the following conditions are true:
• The event occurs on the initial load performed by the instruction(s)

• The condition of the zero flag before the repeat instruction happens to be opposite of the repeat condition
(e.g., REP/REPE/REPZ CMPS/SCAS with ZF = 0 or RENE/REPNZ CMPS/SCAS with ZF = 1)

• The faulting micro-op and a particular micro-op of the REP instruction are retired in the retirement unit in a
specific sequence

The EIP will point to the instruction following the REP CMPS/SCAS instead of pointing to the faulting instruction.

Implication: The result of the incorrect EIP may range from no effect to unexpected application/OS behavior.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

35

H37. RDMSR or WRMSR To Invalid MSR Address May Not Cause
GP Fault

Problem: The RDMSR and WRMSR instructions allow reading or writing of MSRs (Model Specific Registers)
based on the index number placed in ECX. The processor should reject access to any reserved or
unimplemented MSRs by generating #GP(0). However, there are some invalid MSR addresses for which the
processor will not generate #GP(0).

Implication: For RDMSR, undefined values will be read into EDX:EAX. For WRMSR, undefined processor
behavior may result.

Workaround: Do not use invalid MSR addresses with RDMSR or WRMSR.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H38. SYSENTER/SYSEXIT Instructions Can Implicitly Load “Null
Segment Selector” to SS and CS Registers

Problem: According to the processor specification, attempting to load a null segment selector into the CS and
SS segment registers should generate a General Protection Fault (#GP). Although loading a null segment
selector to the other segment registers is allowed, the processor will generate an exception when the segment
register holding a null selector is used to access memory.

However, the SYSENTER instruction can implicitly load a null value to the SS segment selector. This can occur
if the value in SYSENTER_CS_MSR is between FFF8h and FFFBh when the SYSENTER instruction is
executed. This behavior is part of the SYSENTER/SYSEXIT instruction definition; the content of the
SYSTEM_CS_MSR is always incremented by 8 before it is loaded into the SS. This operation will set the null bit
in the segment selector if a null result is generated, but it does not generate a #GP on the SYSENTER
instruction itself. An exception will be generated as expected when the SS register is used to access memory,
however.

The SYSEXIT instruction will also exhibit this behavior for both CS and SS when executed with the value in
SYSENTER_CS_MSR between FFF0h and FFF3h, or between FFE8h and FFEBh, inclusive.

Implication: These instructions are intended for operating system use. If this erratum occurs (and the OS
does not ensure that the processor never has a null segment selector in the SS or CS segment registers), the
processor’s behavior may become unpredictable, possibly resulting in system failure.

Workaround: Do not initialize the SYSTEM_CS_MSR with the values between FFF8h and FFFBh, FFF0h
and FFF3h, or FFE8h and FFEBh before executing SYSENTER or SYSEXIT.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

36

H39. PRELOAD Followed by EXTEST Does Not Load Boundary
Scan Data

Problem: According to the IEEE 1149.1 Standard, the EXTEST instruction would use data “typically loaded
onto the latched parallel outputs of boundary-scan shift-register stages using the SAMPLE/PRELOAD
instruction prior to the selection of the EXTEST instruction.” As a result of this erratum, this method cannot be
used to load the data onto the outputs.

Implication: Using the PRELOAD instruction prior to the EXTEST instruction will not produce expected data
after the completion of EXTEST.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H40. Far Jump to New TSS With D-bit Cleared May Cause System
Hang

Problem: A task switch may be performed by executing a far jump through a task gate or to a new Task State
Segment (TSS) directly. Normally, when such a jump to a new TSS occurs, the D-bit (which indicates that the
page referenced by a Page Table Entry (PTE) has been modified) for the PTE which maps the location of the
previous TSS will already be set and the processor will operate as expected. However, if the D-bit is clear at the
time of the jump to the new TSS, the processor will hang.

Implication: If an OS is used which can clear the D-bit for system pages, and which jumps to a new TSS on a
task switch, then a condition may occur which results in a system hang. Intel has not identified any commercial
software which may encounter this condition; this erratum was discovered in a focused testing environment.

Workaround: Ensure that OS code does not clear the D-bit for system pages (including any pages that
contain a task gate or TSS). Use task gates rather than jumping to a new TSS when performing a task switch.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H41. Incorrect Chunk Ordering May Prevent Execution of the
Machine Check Exception Handler After BINIT#

Problem: If a catastrophic bus error is detected which results in a BINIT# assertion, and the BINIT# assertion
is propagated to the processor’s L2 cache at the same time that data is being sent to the processor, then the
data may become corrupted in the processor’s L1 cache.

Implication: Since BINIT# assertion is due to a catastrophic event on the bus, the corrupted data will not be
used. However, it may prevent the processor from executing the Machine Check Exception (MCE) handler,
causing the system to hang.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

37

H42. Resume Flag May Not Be Cleared After Debug Exception
Problem: The Resume Flag (RF) is normally cleared by the processor after executing an instruction which
causes a debug exception (#DB). In the process of determining whether the RF needs to be cleared after
executing the instruction, the processor uses an internal register containing stale data. The stale data may
unpredictably prevent the processor from clearing the RF.

Implication: If this erratum occurs, further debug exceptions will be disabled.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H43. Processor May Return Invalid Parameters on Execution of
the CPUID Instruction

Problem: The Mobile Module based Intel Celeron processor with on-die L2 cache may return an incorrect
"Maximum CPUID Input Value.” The Mobile Module based Intel Celeron processor with on-die L2 cache is
specified to return a value of 2 in the EAX register when the CPUID instruction is executed with EAX=0;
however, this erratum may result in the value of 3 being returned in EAX. It is also possible that bit 18 of the
EDX register will be set to a 1 when CPUID is executed with EAX=1. This bit is defined as reserved for the
Mobile Module based Intel Celeron processor with on-die L2 cache, but is expected to be set to zero. If CPUID
were to be executed on the Mobile Module based Intel Celeron processor with on-die L2 cache with EAX=3 the
processor should return the cache parameters in the integer registers (EAX, EBX, ECX, EDX); however, the
processors affected by this erratum will return undefined values in the integer registers.

Implication: Intel has not seen any software failures as a result of this erratum; however, since software
written for the Mobile Module based Intel Celeron processor with on-die L2 cache will not be expecting to see a
Maximum CPUID Input Value greater than 2, it is not possible to predict how software will behave on
processors with this erratum. Software using the fact that bit 18 in the feature flags is set, to determine the
presence of the Pentium® III processor serial number feature, without also verifying that it is executing on a
Pentium III processor, may incorrectly believe that the Mobile Module based Intel Celeron processor with on-die
L2 cache, support the processor serial number feature. However, the values the CPUID instruction returns
when CPUID is executed with EAX=3 will not be the processor serial number and will be undefined.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

38

H44. Internal Cache Protocol Violation May Cause System Hang
Problem: An Mobile Intel Celeron processor based system may hang due to an internal cache protocol
violation. During multiple transactions targeted at the same cacheline, there exists a small window of time such
that the processor's internal timings align to create a livelock situation. The scenario, which results in the
erratum, is summarized below:

Scenario:
1. A snoopable transaction is issued to address A. This snoopable transaction can be issued by the

processor or the chipset.
2. The snoopable transaction hits a modified line in the processor’s L1 data cache.
3. The processor issues two code fetches from the L2 cache before the snoopable transaction reaches the

top of the In-Order Queue and before the snoopable transaction's modified L1 cache line containing
address A is brought out on the system bus.

4. At the same time, a locked access to the L1 cache occurs.

Implication: An Mobile Intel Celeron processor may cause a system to hang if the above listed sequence of
events occur. The probability of encountering this erratum increases with I/O queue depth greater than four.

Workaround: It is possible for the BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H45. GP# Fault on WSMSR to ROB_CR_BKUPTMPDR6
Problem: Writing a ‘1’ to unimplemented bit(s) in the ROB_CR_BKUPTMPDR6 MSR (offset 1E0H) will result
in a general protection fault (GP#).

Implication: The normal process used to write an MSR is to read the MSR using RDMSR, modify the bit(s) of
interest, and then to write the MSR using WRMSR. Because of this erratum, this process may result in a GP#
fault when used to modify the ROB_CR_BKUPTMPDR6 MSR.

Workaround: When writing to ROB_CR_BKUPTMPDR6 all unimplemented bits must be ‘0.’ Implemented
bits may be set as ‘0’ or ‘1’ as desired.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

39

H46. Machine Check Exception May Occur Due to Improper Line
Eviction in the IFU

Problem: The Mobile Intel Celeron processor is designed to signal an unrecoverable Machine Check
Exception (MCE) as a consistency checking mechanism. Under a complex set of circumstances involving
multiple speculative branches and memory accesses there exists a one cycle long window in which the
processor may signal a MCE in the Instruction Fetch Unit (IFU) because instructions previously decoded have
been evicted from the IFU. The one cycle long window is opened when an opportunistic fetch receives a partial
hit on a previously executed but not as yet completed store resident in the store buffer. The resulting partial hit
erroneously causes the eviction of a line from the IFU at a time when the processor is expecting the line to still
be present. If the MCE for this particular IFU event is disabled, execution will continue normally.

Implication: While this erratum may occur on a system with any number of processors, the probability of
occurrence increases with the number of processors. If this erratum does occur, a machine check exception will
result. Note systems that implement an operating system that does not enable the Machine Check Architecture
will be completely unaffected by this erratum, e.g., Windows* 95 and Windows 98.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H47 Lower Bits of SMRAM SMBASE Register Cannot Be Written
With an ITP

Problem: The System Management Base (SMBASE) register (7EF8H) stores the starting address of the
System Management RAM (SMRAM). This register is used by the processor when it is in System Management
Mode (SMM), and its contents serve as the memory base for code execution and data storage. The 32-bit
SMBASE register can normally be programmed to any value. When programmed with an In-Target Probe (ITP),
however, any attempt to set the lower 11 bits of SMBASE to anything other than zeros via the WRMSR
instruction will cause the attempted write to fail.

Implication: When set via the ITP, any attempt to relocate SMRAM space must be made with 2 Kbyte
alignment.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

40

H48. Task Switch May Cause Wrong PTE and PDE Access Bit
to be Set

Problem: If an operating system executes a task switch via a Task State Segment (TSS), and the TSS is
wholly or partially located within a clean page (A and D bits clear) and the GDT entry for the new TSS is either
misaligned across a cache line boundary or is in a clean page, the accessed and dirty bits for an incorrect page
table/directory entry may be set.

Implication: An operating system that uses hardware task switching (or hardware task management) may
encounter this erratum. The effect of the erratum depends on the alignment of the TSS and ranges from no
anomalous behavior to unexpected errors.
Workaround: The operating system could align all TSSs to be within page boundaries and set the A and D
bits for those pages to avoid this erratum. The operating system may alternately use software task
management.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H49. Unsynchronized Cross-Modifying Code Operations Can
Cause Unexpected Instruction Execution Results

Problem: The act of one processor, or system bus master, writing data into a currently executing code
segment of a second processor with the intent of having the second processor execute that data as code is
called cross-modifying code (XMC). XMC that does not force the second processor to execute a synchronizing
instruction, prior to execution of the new code, is called unsynchronized XMC.

Software using unsynchronized XMC to modify the instruction byte stream of a processor can see unexpected
instruction execution from the processor which is executing the modified code.

Implication: In this case, the phrase "unexpected execution behavior" encompasses the generation of most
of the exceptions listed in the Intel Architecture Software Developer's Manual Volume 3: System Programming
Guide including a General Protection Fault (GPF). In the event of a GPF, the application executing the
unsynchronized XMC operation would be terminated by the operating system.

Workaround: In order to avoid this erratum, programmers should use the XMC synchronization algorithm as
detailed in the Intel Architecture Software Developer's Manual Volume 3: System Programming Guide, Section
7.1.3.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

41

H50. Deadlock May Occur Due To Illegal-Instruction/Page-Miss
Combination

Problem: Intel's 32-bit Instruction Set Architecture (ISA) utilizes most of the available op-code space; however
some byte combinations remain undefined and are considered illegal instructions. Intel processors detect the
attempted execution of illegal instructions and signal an exception. This exception is handled by the operating
system and/or application software.

Under a complex set of internal and external conditions involving illegal instructions, a deadlock may occur
within the processor. The necessary conditions for the deadlock involve:

1. The illegal instruction is executed.

2. Two page table walks occur within a narrow timing window coincident with the illegal instruction.

Implication: The illegal instructions involved in this erratum are unusual and invalid byte combinations that
are not useful to application software or operating systems. These combinations are not normally generated in
the course of software programming, nor are such sequences known by Intel to be generated in commercially
available software and tools. Development tools (compilers, assemblers) do not generate this type of code
sequence, and will normally flag such a sequence as an error. If this erratum occurs, the processor deadlock
condition will occur and result in a system hang. Code execution cannot continue without a system RESET.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H51. FLUSH# Assertion Following STPCLK# May Prevent CPU
Clocks From Stopping

Problem: If FLUSH# is asserted after STPCLK# is asserted, the cache flush operation will not occur until after
STPCLK# is de-asserted. Furthermore, the pending flush will prevent the processor from entering the Sleep
state, since the flush operation must complete prior to the processor entering the Sleep state.

Implication: Following SLP# assertion, processor power dissipation may be higher than expected.
Furthermore, if the source to the processor’s input bus clock (BCLK) is removed, normally resulting in a
transition to the Deep Sleep state, the processor may shutdown improperly. The ensuing attempt to wake up
the processor will result in unpredictable behavior and may cause the system to hang.

Workaround: For systems that use the FLUSH# input signal and Deep Sleep state of the processor, ensure
that FLUSH# is not asserted while STPCLK# is asserted.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

42

H52. Floating-Point Exception Condition May Be Deferred
Problem: A floating-point instruction that causes a pending floating-point exception (ES=1) is
normally signaled by the processor on the next waiting FP/MMX™ technology instruction. In the
following set of circumstances, the exception may be delayed or the FSW register may contain a
wrong value:

1. The excepting floating-point instruction is followed by an instruction that accesses memory across a
page (4-Kbyte) boundary or its access results in the update of a page table dirty/access bit.

2. The memory accessing instruction is immediately followed by a waiting floating-point or MMX
technology instruction.

3. The waiting floating-point or MMX technology instruction retires during a one-cycle window that
coincides with a sequence of internal events related to instruction cache line eviction.

Implication: The floating-point exception will not be signaled until the next waiting floating-
point/MMX technology instruction. Alternatively, it may be signaled with the wrong TOS and
condition code values. This erratum has not been observed in any commercial software
applications.

Workaround: None identified

Status: For the stepping affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

43

H53. Race Conditions May Exist on Thermal Sensor SMBus
Collision Detection/Arbitration Circuitry

Problem: In certain SMBus configurations, when the thermal sensor is used in “hard wired alert” mode along
with at least one other device on the bus, the thermal sensor may continue to send its address after losing a
collision arbitration in response to an Alert Response Address (ARA) by the SMBus controller.

In order for this erratum to occur, all of the following conditions must be present:
1. The thermal sensor must be configured with alert enabled (default setting).
2. There must be one or more other devices on the SMBus along with the thermal sensor.
3. One or more of these other devices must be also configured with the alert enabled.
4. One or more of these other devices must have a lower address (higher priority) than the thermal sensor.
5. The thermal sensor must generate an SM alert while at least one other device has an SM alert pending to

be serviced.

In this situation, the thermal sensor will continue to send its address on the SMBus even if it has a lower priority
than the pending alert. When this occurs, the SMBus controller cannot correctly interpret the device address.
This may cause the thermal sensor’s alert flag not to clear and may result in SMBus lockup.

Implication: The SMBus controller may see an invalid address and the resulting response of the SMBus
controller will vary from implementation to implementation.

Workaround: Remove any one of the five conditions listed above or:

1. In software, use polling mode for the thermal sensor data collection with alert disabled. This software
workaround has been validated on both Intel’s test platforms as well as on certain OEM systems.

2. Ensure that the thermal sensor alert may be cleared by a hardware or software mechanism. The
implementation of this workaround will be system dependent.

Status: For the steppings affected, see the Summary of Changes at the beginning of this section.

H54. Intermittent Power-on Failure Due To Uninitialized Processor
Internal Nodes

Problem: If there is no clock source supplied to the processor’s PICCLK pin, the processor may drive an
incorrect address for the reset vector at power-on due to uninitialized processor internal nodes. In this scenario
when ADS# is asserted, it is possible that the processor drives either the SMI or NMI vector addresses, rather
than the reset vector address.

Implication: Systems that provide a clock to the processor’s PICCLK pin are unaffected by this issue. On a
system implementation with no clock source supplied to the processor’s PICCLK pin, a small percentage of the
systems may intermittently fail to boot, or may fail to resume from a STR or STD state. On the next power-on,
the system will likely boot normally.

Workaround: Supply a clock source to the processor’s PICCLK pin.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

44

H55. Selector for The LTR/LLDT Register May Get Corrupted
Problem: The internal selector portion of the respective register (TR, LDTR) may get corrupted if, during a
small window of LTR or LLDT system instruction execution, the following sequence of events occur:

1. Speculative write to a segment register that might follow the LTR or LLDT instruction
2. The read segment descriptor of LTR/LLDT operation spans a page (4 Kbytes) boundary; or causes a

page fault

Implication: Incorrect selector for LTR, LLDT instruction could be used after a task switch.

Workaround: Software can insert a serializing instruction between the LTR or LLDT instruction and the
segment register write.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H56. INIT Does Not Clear Global Entries in The TLB
Problem: INIT may not flush a TLB entry when:

1. The processor is in protected mode with paging enabled and the page global enable flag is set (PGE bit of
CR4 register)

2. G bit for the page table entry is set
3. TLB entry is present in TLB when INIT occurs

Implication: Software may encounter unexpected page fault or incorrect address translation due to a TLB entry
erroneously left in TLB after INIT.

Workaround: Write to CR3, CR4 or CR0 registers before writing to memory early in BIOS code to clear all the
global entries from TLB.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H57. VM Bit Will Be Cleared on a Double Fault Handler
Problem: Following a task switch to a Double Fault Handler that was initiated while the processor was in
virtual-8086 (VM86) mode, the VM bit will be incorrectly cleared in EFLAGS.

Implication: When the OS recovers from the double fault handler, the processor will no longer be in VM86
mode.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

45

H58. Memory Aliasing with Inconsistent A and D Bits May Cause
Processor Deadlock

Problem: In the event that software implements memory aliasing by having two Page Directory Entries(PDEs)
point to a common Page Table Entry (PTE) and the Accessed and Dirty bits for the two PDEs are allowed to
become inconsistent the processor may become deadlocked.

Implication: This erratum has not been observed with commercially available software.

Workaround: Software that needs to implement memory aliasing in this way should manage the consistency
of the Accessed and Dirty bits.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H59. Use of Memory Aliasing with Inconsistent Memory Type May
Cause System Hang

Problem: Software that implements memory aliasing by having more than one linear addresses mapped to
the same physical page with different cache types may cause the system to hang. This would occur if one of the
addresses is non-cacheable used in code segment and the other a cacheable address. If the cacheable
address finds its way in instruction cache, and non-cacheable address is fetched in IFU, the processor may
invalidate the non-cacheable address from the fetch unit. Any micro-architectural event that causes instruction
restart will expect this instruction to still be in fetch unit and lack of it will cause system hang.

Implication: This erratum has not been observed with commercially available software.

Workaround: Although it is possible to have a single physical page mapped by two different linear addresses
with different memory types, Intel has strongly discouraged this practice as it may lead to undefined results.
Software that needs to implement memory aliasing should manage the memory type consistency.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H60. Processor may Report Invalid TSS Fault Instead of Double
Fault During Mode C Paging

Problem: When an operating system executes a task switch via a Task State Segment (TSS) the CR3
register is always updated from the new task TSS. In the mode C paging, once the CR3 is changed the
processor will attempt to load the PDPTRs. If the CR3 from the target task TSS or task switch handler TSS is
not valid then the new PDPTR will not be loaded. This will lead to the reporting of invalid TSS fault instead of
the expected Double fault.

Implication: Operating systems that access an invalid TSS may get invalid TSS fault instead of a Double
fault.

Workaround: Software needs to ensure any accessed TSS is valid.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

46

H61. Machine Check Exception may Occur When Interleaving
Code Between Different Memory Types

Problem: A small window of opportunity exists where code fetches interleaved between different memory
types may cause a machine check exception. A complex set of micro-architectural boundary conditions is
required to expose this window.

Implication: Interleaved instruction fetches between different memory types may result in a machine check
exception. The system may hang if machine check exceptions are disabled. Intel has not observed the
occurrence of this erratum while running commercially available applications or operating systems.

Workaround: Software can avoid this erratum by placing a serializing instruction between code fetches which
span different memory types.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H62. Wrong ESP Register Values During a Fault in VM86 Mode
Problem: At the beginning of the IRET instruction execution in VM86 mode, the lower 16 bits of the ESP
register are saved as the old stack value. When a fault occurs, these 16 bits are moved into the 32-bit ESP,
effectively clearing the upper 16 bits of the ESP.

Implication: This erratum has not been observed to cause any problems with commercially available
software.

Workaround: None identified.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

H63. APIC ICR Write May Cause Interrupt Not to be Sent When
ICR Delivery Bit Pending

Problem: If the APIC ICR (Interrupt Control Register) is written with a new interrupt command while the
Delivery Status bit from a previous interrupt command is set to '1’ (Send Pending), the interrupt message may
not be sent out by the processor.

Implication: This erratum will cause an interrupt message not to be sent, potentially resulting in system hang.

Workaround: Software should always poll the Delivery Status bit in the APIC ICR and ensure that it is '0’
(Idle) before writing a new value to the ICR.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

47

H64. Processor Incorrectly Samples NMI Interrupt after RESET#
Deassertion When Processor APIC is Hardware-Disabled

Problem: When the processor APIC is hardware-disabled the processor may incorrectly interpret the NMI
signal as an NMI interrupt, instead of a frequency strap value, starting six bus clocks after RESET# is de-
asserted. This will result in a processor hang due to the NMI Handler not being installed at this time.

Implication: The system may fail to boot due to this issue.

Workaround: The processor APIC must be hardware-enabled by pulling PICD[1:0] high with separate pull up
resistors and supplying PICCLK to the processor.

Status: For the steppings affected, see the Summary of Changes at the beginning of this section.

H65. The Instruction Fetch Unit (IFU) May Fetch Instructions
Based Upon Stale CR3 Data After a Write to CR3 Register

Problem - Under a complex set of conditions, there exists a one clock window following a write to the CR3
register where-in it is possible for the iTLB fill buffer to obtain a stale page translation based on the stale CR3
data. This stale translation will persist until the next write to the CR3 register, the next page fault or execution of
a certain class of instructions including RDTSC, CPUID, or IRETD with privilege level change.

Implication - The wrong page translation could be used leading to erroneous software behavior.

Workaround - Operating systems that are potentially affected can add a second write to the CR3 register.

Status - For the steppings affected, see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

48

H66. Under some complex conditions, the instructions in the
Shadow of a JMP FAR may be Unintentionally Executed and
Retired

Problem - If all of the following events happen in sequence it is possible for the system or application to hang
or to execute with incorrect data.

1. The execution of an instruction, with an OPCODE that requires the processor to stall the issue of micro-
instructions in the flow from the microcode sequence logic block to the instruction decode block. (a StallMS
condition)
2. Exactly 63 (39 for Pre-CPUID 0x6Bx) micro-instructions later, the execution of a mispredictable branch
instruction. (Jcc, LOOPcc, RET Near, CALL Near Indirect, JMP ECX=0, or JMP Near Indirect)
3. The conditional branch in event (2) is mispredicted, and furthermore the mispredicted path of execution must
result in either an ITLB miss, or an Instruction Cache miss. This needs to briefly stall the issue of micro-
instructions again immediately after the conditional branch until that branch prediction is corrected by the jump
execution block. (a 2nd StallMS condition)
4. Along the correct path of execution, the next instruction must contain a 3rd StallMS condition at a precisely
aligned point in the execution of the instruction. (CLTS, POPSS, LSS, MOV to SS)
5. A JMP FAR instruction must execute within the next 63 micro-instructions (39 Pre-CPUID 0x6BX) The
intervening micro-instructions must not have any events or faults. When the instruction from event (2) retires,
the StallMS condition within the event (5) instruction fails to operate correctly, and instructions in the shadow of
the JMP FAR instruction could be unintentionally executed.

Implication -When this erratum occurs, system and/or application may hang or have incorrect data. In current
Microsoft operating systems, this may result in a blue screen. One of four of the instructions that are required to
trigger this erratum, CLTS, is a privileged instruction that is only executed by operating system or driver code.
Intel has not identified any commercial software which may encounter this condition; this erratum was
discovered in a focused test environment. The remaining three instructions, POPSS, LSS, and MOV to SS, are
executed infrequently in modern 32-bit application code.

Workaround - None, identified at this time

Status - For the stepping affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

49

H67. Processor Does not Flag #GP on Non-zero Write to Certain
MSRs

Problem - When a non-zero write occurs to the upper 32 bits of SYSENTER_EIP_MSR or
SYSENTER_ESP_MSR, the processor should indicate a general protection fault by flagging #GP. Due to this
erratum, the processor does not flag #GP.

Implication - The processor unexpectedly does not flag #GP on a non-zero write to the upper 32 bits of
SYSENTER_EIP_MSR or SYSENTER_ESP_MSR. No known commercially available operating system has
been identified to be affected by this erratum.

Workaround - None identified.

Status - For the steppings affected, see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

50

DOCUMENTATION CHANGES
The Documentation Changes listed in this section applies to the following documents:

• P6 Family of Processors Hardware Developer’s Manual

• Intel® Mobile Celeron® Processor in Micro-PGA and BGA Package at 466 MHz, 433 MHz, 400 MHz, 366
MHz, 333 MHz, 300 MHz and 266 MHz datasheet

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 1 (MMC-1) at 400 MHz, 366 MHz,
333 MHz, 300 MHz, and 266 MHz datasheet

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 2 (MMC-2) at 400 MHz, 366 MHz,
333 MHz, 300 MHz, and 266 MHz datasheet

• Intel® Mobile Celeron® Processor: Mobile Module MMC-1 at 466 MHz and 433 MHz datasheet
• Intel® Mobile Celeron® Processor: Mobile Module MMC-2 at 466 MHz and 433 MHz datasheet

Note: Documentation changes for IA-32 Intel(R) Architecture Software Developer’s Manual volumes 1, 2, and 3
are posted in a separate document " IA-32 Intel(R) Architecture Software Developer’s Manual Documentation
Changes". This Document has been posted to http://developer.intel.com/.

All Documentation Changes will be incorporated into a future version of the appropriate Intel Celeron processor
documentation.

H1. Mobile Celeron Processor CPUID Section Update

The Mobile Intel® Celeron® Processor in micro-PGA and BGA Packages at 466 MHz, 433 MHz, 400 MHz, 366
MHz, 300 MHz and 266 MHz datasheet (order number 245112-005) has the following Documentation Change.
The datasheet was incorrectly documented as stating the EAX register contained the values after a power-on
RESET. The correct statement is after a power-on RESET, the EDX register contains the processor version
information (type, family, model, stepping).

Section 2.4 Update

The Mobile Celeron processor has the same CPUID family and model number as some Pentium II processors.
The Mobile Celeron processor can be distinguished from these Pentium II processors by looking at the stepping
number and the cache descriptor information. A Mobile Celeron processor has a stepping number in the range
of 0AH to 0CH and an L2 cache descriptor of 041H (128-Kbyte L2 cache). If the L2 cache descriptor is 042H,
then the processor is a Pentium II processor. The L2 cache must be properly initialized for the L2 cache
descriptor information to be correct.

When the CPUID version information is loaded with EAX=01H, the EAX register contain the values shown in
Table 2.4. After a power-on RESET, the EDX register contains the processor version information (type, family,
model, stepping).

See Intel Processor Identification and the CPUID Instruction Application Note AP-485 for further information.

http://developer.intel.com/.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

51

Table 2.4. Mobile Celeron Processor CPUID

EAX[31:0]
Reserved[31:14] Type [13:12] Family [11:8] Model [7:4] Stepping [3:0]
X 0 6 6 A - C

After the L2 cache is initialized, the CPUID cache/TLB descriptors will be the values shown in Table 2.5.

Table 2.5. Mobile Celeron Processor CPUID Cache and TLB Descriptors

Cache and TLB Descriptors 01H, 02H, 03H, 04H, 08H, 0CH, 41H

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

52

SPECIFICATION CLARIFICATIONS
The Specification Clarifications listed in this section apply to the following documents:

• P6 Family of Processors Hardware Developer’s Manual

• Intel® Mobile Celeron® Processor in Micro-PGA and BGA Package at 466 MHz, 433 MHz, 400 MHz, 366
MHz, 333 MHz, 300 MHz and 266 MHz datasheet

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 1 (MMC-1) at 400 MHz, 366 MHz,
333 MHz, 300 MHz, and 266 MHz datasheet

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 2 (MMC-2) at 400 MHz, 366 MHz,
333 MHz, 300 MHz, and 266 MHz datasheet

• Intel® Mobile Celeron® Processor: Mobile Module MMC-1 at 466 MHz and 433 MHz datasheet
• Intel® Mobile Celeron® Processor: Mobile Module MMC-2 at 466 MHz and 433 MHz datasheet

• Intel Architecture Software Developer’s Manual, Volumes 1, 2 and 3

All Specification Clarifications will be incorporated into a future version of the appropriate Intel Celeron
processor documentation.

H1. Shipping Container Maximum Temperature Rating for BGA1
In the Intel® Mobile Celeron® Processor in BGA Package at 300 MHz and 266 MHz datasheet, note 1 is added
to Table 3.5 of the datasheets to include the maximum shipping container temperature rating of 65o C. The
following is the updated Table 3.5.

Table 3.5. Mobile Celeron® Processor Absolute Maximum Ratings

Symbol Parameter Min Max Unit Notes
TStorage Storage Temperature –40 85 °C 1
VCC(Abs) Supply Voltage with respect to VSS –0.5 3.0 V

VCCP CMOS Reference Voltage with respect to VSS –0.3 3.0 V
VIN GTL+ Buffer DC Input Voltage with respect to VSS –0.3 VCC + 0.7 V 2

VIN25 2.5 V Buffer DC Input Voltage with respect to VSS –0.3 3.3 V 3
NOTES:
1. The shipping container is only rated for 65° C.
2. Parameter applies to the Low Power GTL+ signal groups only.
3. Parameter applies to CMOS, Open-Drain, APIC and TAP bus signal groups only.

H2. ESD for MMC-1 and MMC-2
In the Intel® Mobile Celeron® Processor: Mobile Module MMC-1 datasheet and the Intel® Mobile Celeron®
Processor: Mobile Module MMC-2 datasheet, ESD is a nonpowered test of the module for noncatastrophic
failure only. The module is tested at 2 KV and then is inserted in a system for a functional test.

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

53

H3. Bulk Capacitance Requirements For The System Electronics
This is a clarification to the Intel® Celeron Processor: Mobile Module MMC-1 (Order Number #245101), the
Intel® Mobile Celeron Processor: Mobile Module MMC-2 (Order Number #245102):

Placement of sufficient bulk capacitance on the system electronics board is critical to the operation
of the Intel Celeron processor mobile module and to ensure the system design can accommodate
future high frequency modules. Intel has provided the maximum possible bulk capacitance on the
module. However, in order to achieve proper filtering and in-rush current protection, it is imperative
that additional filtering be provided on the system electronics board. Table 1 details the bulk
capacitance requirements for the system electronics. Also, take special note of the voltage rating
requirement for the capacitors on each respective voltage rail.

Note that the rating requirement and note 5 has been changed from previous versions of this table in
the Celeron Processor Mobile Module datasheet. Future revisions of this specification will include
these new changes.

Table 1. Bulk Capacitance

Power Plane Capacitance Requirements Max Total
ESR

Ripple Current Rating

V_DC 100 uf 5, 0.1 uf, 0.01 uf1 20 mΩ 4.5A-7.5A3

3A ~ 5A4

20% tolerance at 35V

V_5 100 uf5, 0.1 uf, 0.01 uf1 100 mΩ 1A 20% tolerance at 10V

V_3 470 uf5, 0.1 uf, 0.01 uf1 100 mΩ 1A 20% tolerance at 6V
V_3S 100 uf5, 0.1 uf, 0.01 uf1 100 mΩ N/A 20% tolerance at 6V

VCC_AGP 22 uf5, 0.1 uf, 0.01 uf1 100 mΩ 1A 20% tolerance at 6V
V_CPUPU 2.2 uf, 8200 pf1 N/A N/A 20% tolerance at 6V

V_CLK 10 uf5, 8200 pf2 N/A N/A 20% tolerance at 6V
NOTES:
1. Placement of above capacitance requirements should be located near the connector.
2. V_CLK filtering should be located next to the system clock synthesizer.
3. Ripple current specification depends on V_DC input for the Geyserville module.
4. Ripple current specification depends on V_DC input for the single frequency module.
5. If Tantalum Capacitors are used, a 50% voltage de-rating practice must be observed (for example, a 5.0-V rail

requires a 10.0-V rated capacitor).

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,
366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

54

SPECIFICATION CHANGES
The Specification Changes listed in this section apply to the following documents:

• P6 Family of Processors Hardware Developer’s Manual

• Intel® Mobile Celeron® Processor in Micro-PGA and BGA Package at 466 MHz, 433 MHz, 400 MHz, 366
MHz, 333 MHz, 300 MHz and 266 MHz datasheet

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 1 (MMC-1) at 400 MHz, 366 MHz,
333 MHz, 300 MHz, and 266 MHz datasheet

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 2 (MMC-2) at 400 MHz, 366 MHz,
333 MHz, 300 MHz, and 266 MHz datasheet

• Intel® Mobile Celeron® Processor: Mobile Module MMC-1 at 466 MHz and 433 MHz datasheet
• Intel® Mobile Celeron® Processor: Mobile Module MMC-2 at 466 MHz and 433 MHz datasheet

• Intel Architecture Software Developer’s Manual, Volumes 1, 2 and 3

All Specification Changes will be incorporated into a future version of the appropriate Mobile Intel Celeron
processor documentation.

H1. ICC,SG, ICC,QS, and ICC,DSLP Maximum Specifications for
BGA1 and Mini-Cartridge

In the Intel® Mobile Celeron® Processor in BGA Package at 300 MHz and 266 MHz datasheet, maximum ICC,SG,
ICC,QS, and ICC,DSLP specifications have been increased by 250 mA, to 1190 mA, 880 mA and 650 mA
respectively. The following is the updated Table 3.6 of the datasheets.

Table 3.6. Mobile Celeron® Processor Power Specifications1
TCASE = 0 to TCASE,max; VCC = 1.6 V ±135 mV; VCCP = 1.8 V ±90 mV
Symbol Parameter Min Typ Max Unit Notes

VCC VCC of core logic for regular voltage
processors

1.465 1.6 1.735 V ±135 mV

VCC,LP VCC when ICC < 300 mA 1.465 1.6 1.805 V +205/-135 mV 2
VCCP VCC for CMOS voltage references 1.71 1.8 1.89 V 1.8 V ±90 mV
ICC ICC for VCC at core @ 300 MHz

frequency @ 266 MHz
 7.49

6.63
A
A

5

ICCP Current for VCCP 75 mA 3, 4, 5
ICC,SG Processor Stop Grant and

Auto Halt current
 1190 mA 5

ICC,QS Processor Quick Start and
Sleep current

 880 mA 5

ICC,DSLP Processor Deep Sleep leakage current 650 mA 5

MOBILE INTEL® CELERON® PROCESSOR at 466 MHz, 433 MHz, 400 MHz,

366 MHz, 333 MHz, 300 MHz, 266 MHz SPECIFICATION UPDATE

55

Table 3.6. Mobile Celeron® Processor Power Specifications1
TCASE = 0 to TCASE,max; VCC = 1.6 V ±135 mV; VCCP = 1.8 V ±90 mV
Symbol Parameter Min Typ Max Unit Notes

dICC/dt VCC power supply current slew rate 20 A/µs 6, 7
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. A higher VCC,MAX is allowed when the processor is in a low power state to enable high efficiency, low current modes

in the power regulator.
3. ICCP is the current supply for the CMOS voltage references.
4. Not 100% tested. Specified by design/characterization.
5. ICCx,max specifications are specified at VCC,max, VCCP,max and 100° C and under maximum signal loading conditions.

ICCx,max specifications are not specified at VCC,LP,max, if that voltage specification is used then slightly higher
currents can be expected.

6. Based on simulations and averaged over the duration of any change in current. Use to compute the maximum
inductance and reaction time of the voltage regulator. This parameter is not tested.

7. Maximum values specified by design/characterization at nominal VCC and VCCP.

H2. Temperature Note For Thermal Power Specifications
In the Intel® Mobile Celeron® Processor in BGA Package at 333 MHz, 300 MHz and 266 MHz datasheet, Table
6.1 TDP notes should state “at 100o C2, 3” instead of “at 50o C2, 3”. Table Note 3 should state, “3. Not 100%
tested or guaranteed. The power specifications are composed of the current of the processor on the various
voltage planes. These currents are measured and specified at high temperature in Section 3.5. The 50° C
power specifications are determined by characterization of the processor currents at higher temperatures.”

	REVISION HISTORY
	Nomenclature

	GENERAL INFORMATION
	Mobile Intel® Celeron® Processor in Micro-PGA Package
	Mobile Intel® Celeron® Processor in BGA1 Package
	Intel® Celeron® Processor Mobile Module Markings
	Intel® Celeron® Processor Mobile Module (MMC-1)
	Intel® Celeron® Processor Mobile Module (MMC-2)
	IDENTIFICATION INFORMATION

	SUMMARY OF CHANGES
	
	
	CODES USED IN SUMMARY TABLE

	SUMMARY OF ERRATA

	ERRATA
	
	
	
	
	H1.

	H1.

	SPECIFICATION CLARIFICATIONS
	
	
	
	
	H1.
	H2.

	H3.

	SPECIFICATION CHANGES
	
	
	
	
	H1.
	H2.

